ECE 461: Digital Communication
Lecture 8b: Pulse Shaping and Sampling

Introduction

Information is digital in today’s world but the physical world is still analog. Digital commu-
nication entails mapping digital information into electromagnetic energy (voltage waveforms)
and transmitting over an appropriate physical medium (over a wire or wireless). At the re-
ceiver, we record the electromagnetic energy (voltage waveform again) and based on this
knowledge, try to recover the original information bits. In the first lecture, we pointed
out that for engineering convenience, the mapping between digital information and analog
voltage waveforms is divided into two separate parts. At the transmitter:

e we first map digital information into a discrete sequence of voltage levels; this is the
modulation or coding step.

e next, we interpolate between these voltage levels to produce an analog voltage waveform
that is then transmitted; this is the DAC (digital to analog conversion) step.

At the receiver:

e we sample the received analog voltage waveform to produce a discrete sequence of
voltage levels; this is the ADC (analog to digital conversion) step.

e next, we map the discrete sequence of sampled voltage levels to the information bits;
this is the demodulation or decoding step.

These operations are depicted in Figure 1, in the context of transmission over the AWGN
channel.

We have seen in the previous lectures, in substantial detail, the steps of modulation
(coding) and demodulation (decoding). In this lecture, we will delve deeper into the DAC
and ADC steps. At the end of this lecture, we will be able to derive a relationship between
the sampling and interpolation rates (of the ADC and DAC, respectively) with an important
physical parameter of an analog voltage waveform: bandwidth.

Digital to Analog Conversion (DAC)

How do we map a sequence of voltages, {x[m|}, to waveforms, z(¢)? This mapping is known
as DAC. There are a few natural conditions we would like such a mapping to meet:

1. Since the digital information is contained in the discrete sequence of voltages {x[m]},
we would like these voltages to be readily recovered from the voltage waveform z(t).
One way of achieving this is to set

x(mT) = x[m] (1)

where T' is the time period between voltage samples. This way, all the information we
want to communicate is present in the transmitted waveform and readily extractable
too.
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Figure 1: The basic transmit and receive operations in the context of communicating over

the AWGN channel.

2. We could potentially pick any waveform that satisfies Equation (1). In other words,
we seek to interpolate between the uniformly spaced voltage sequence. Of course, this
interpolation should be universal, i.e., it should work for any sequence of discrete volt-
age levels (this is because the voltage sequence varies based on the coding method
(sequential vs block) and also the information bits themselves). While such interpola-
tion could be done in any arbitrary fashion (as long as Equation (1) is obeyed), there
are some natural considerations to keep in mind:

(a) We would like the resulting waveform x(t) to have the smallest possible band-
width. As we will see shortly, physical media, both wireless and wireline, impose
spectral restrictions on the waveform transmitted through them; the most com-
mon type of these restrictions is that the bandwidth be as small as possible.

(b) With an eye towards ease of implementation, we would like to have a systematic
way of interpolating the voltage sequences. It would also be useful from an imple-
mentation stand point if the waveform value at any time can be generated using
the discrete voltage values in its immediate neighborhood.

A convenient way of taking care of these conditions while interpolating, is to use the
pulse shaping filter:

x(t) =) wlmlg (t —mT) (2)
m>0

where T is once again the time period between samples, and g(¢) is our “pulse”, also known
as the “interpolation filter”. Essentially, a DAC that uses this pulse shaping equation will
overlay (or convolve) the pulse over the voltage impulse defined by z[m], and add all the
convolutions together. Thus, the DAC in a transmitter is also called a “pulse shaper”. This
ensures a systematic way of generating the voltage waveform, but how well the other two
conditions enumerated above are met depends on the choice of the pulse g(#):

1. From Equation (2), we see that the bandwidth of x(t) is exactly the same as the
bandwidth of g(t). So, controlling the bandwidth of z(t) is the same as appropriate
design of the pulse g(t).
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Figure 2: A pulse and its spread T,,.

2. How many neighboring discrete voltage values 2:[m] affect the actual value of the voltage
waveform z(t) at any time ¢ depends on the spread of the pulse: the larger the spread,
the more the impact of the number of neighboring discrete voltage values in deciding
the waveform voltage value. Figure 2 illustrates this point: the number of neighboring
voltages that make an impact is approximately the ratio of the spread of the pulse T,
to the time period between the discrete voltage values T'.

These two aspects are better appreciated in the concrete context of the three example pulses
discussed below.

Exemplar Pulses

e Rectangular Pulse: The rectangular pulse (rect pulse for short), or Zero Order Hold
(ZOH) would overlay a voltage sample with a waveform that looks like that in Figure
3. As is, the rect pulse is nonzero for negative values of ¢, making it depend on a
future discrete voltage level. An alternative shifted version of the ZOH simply holds
each voltage until the next time instant: thus exactly one discrete voltage level is all
that is needed (the immediately previous one) to decide the voltage waveform value at
any time t.

The greatest advantage of the ZOH is that it is very simple to implement with minimal
memory requirements. On the flip side however, we know from our previous knowledge
on waveforms and the Fourier transform that sharp edges in the time domain means
large bandwidth in the frequency domain. Thus, this is the main disadvantage of



A
\J

N
N

)

Figure 3: The rectangular pulse waveform g(t) = rect (
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the ZOH, since its Fourier transform is actually a sinc function, which has infinite
bandwidth. As a result, the rectangular pulse is not a very practical interpolation
filter to use, since it is not possible to keep the spectral content of the waveform within
any bandwidth constraint (that a channel would impose).

Sinc Pulse: From the rectangular pulse, we learn that we want to constrain the band-

width of the interpolation filter that we choose. If that is the case, then a natural

choice for our pulse should have a power spectrum with a rectangular shape similar to

that in Figure 3. A pulse shape with this spectrum is the “ideal interpolation filter”
Tt

%) &t Si“gT) in the time domain
T

in signal processing, and corresponds to g(t) = sinc (

(see Figure 4).

The advantages of the sinc pulse are similar to the advantages of the rectangular
pulse, except that they hold in the frequency domain rather than in the time domain.
It completely restricts the frequency content within a compact box so that we can
tightly meet any bandwidth constraint. But such a perfect cut-off in the frequency
domain implies that the time domain sequence has to be of infinite length, which
means that the pulse spread is very large.

Raised Cosine Pulse: A solution to the problems of the rectangular and sinc filters is
to choose a pulse that lies in between. This way, the pulse would not be infinitely long
in either the time or frequency domain. An example of such a pulse is the raised cosine
pulse, whose waveform is shown in Figure 5. Mathematically, the raised cosine pulse

is given by
Y cos (%)
grc(t) = Ssinc <T> w (3)
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Figure 4: The sinc pulse waveform g(t) = sinc ().

By varying the parameter 5 between 0 and 1, we can get from a sinc pulse (§ = 0)
to a much dampened version (5 = 1).

As the illustration in Figure 5 demonstrates, the raised cosine has a smooth roll-off in
the time domain, restricting the amount of bandwidth it uses. It also dampens to zero
more quickly than the sinc, meaning that it is also more practical to use.

Bandwidth and Narrowest Spacing

What is the bandwidth of the transmit signal with the exemplar pulses studied above? There
are several definitions of bandwidth, but let us agree on an approximate definition that is
good for our purposes: bandwidth of a voltage waveform xz(t) is the measure of the smallest
set of frequencies where most of the energy of the Fourier transform X (f) is contained in. For
instance: the Fourier transform of the pulse sinc (%) is Trect (fT') (cf. Homework exercise).
We see that all the energy of the Fourier transform is contained entirely within the finite
spread of frequencies [—%, %] So, we say that the bandwidth is 1/T. More generally, the
bandwidth of the raised cosine pulse depends on the parameter (3: it increases as (3 increases.
Specifically, the bandwidth is equal to 1/7" when § = 0, about % when # = 0.5 and about
2 when 3 =1 (cf. Homework exercise).

In each of the cases studied above the bandwidth of the transmit signal is directly propor-
tional to 1/T, exactly the rate of discrete transmit voltage sequences. But our study of the
special cases above was motivated by engineering purposes (simple methods of interpolation,
etc). It is useful to know how much we are losing by taking the engineering considerations
very seriously: this entails asking the following fundamental question:

Supposing any interpolation strategy, what is the smallest bandwidth one can
get as a function of the discrete transmit voltage rate %?

5
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Figure 5: The raised cosine pulse waveform.

A fundamental result in communication theory says that the answer is approximately equal
to %.1 Concretely, this is exactly achieved by using the sinc pulse to shape the transmit
waveform. In engineering practice, a raised cosine pulse (with an appropriate choice of 3) is
used. While that will entail a “loss” in bandwidth usage, we will simply use the term 1/T
for the bandwidth of the transmit signal. This will not seriously affect any of the conceptual

developments to follow (the numerical values of data rate might change).

Analog to Digital Conversion (ADC)

The received voltage waveform y(t) has potentially larger bandwidth than z(¢) due to the
addition of the noise waveform w(t). However, the information content is available only
within the bandwidth of the transmit waveform z(t). So we can, without loss of any infor-
mation, filter the received waveform and restrict its bandwidth to be the same as that of the
transmit waveform x(t). We would like to convert this waveform into a discrete sequence
of voltage levels that can be further processed to decode the information bits. The natural
thing to do is to sample the received waveform at the same rate 1/7": this creates a discrete

'We say approximately because our definition of bandwidth involved the mathematically ambiguous word
“most”.



sequence of voltage levels

ylm) = y(mT) (4)
= z(mT)+ w(mT) (5)
[m] +wlml, (6)

that are the transmit voltage sequence corrupted by additive noise. This is the basic AWGN
channel we have studied reliable communication over. In engineering practice, it is quite
common to over sample at the receiver: for instance at the rate of 2/T rather than 1/T
samples per second. This leads to a somewhat more involved model where the intermediate
received samples are noisy versions of a weighted sum of transmit voltages. We will take a
careful look at the analytical forms of this channel model in the next lecture when we begin
studying wireline communication. Further, we will see the engineering rationale for over
sampling at the receiver during our upcoming study of reliable communication over wireline
channels.

Bandwidth and Capacity of the AWGN Channel
Consider the AWGN channel from Equation (6):

ylm] = z[m] +wlm], m > 1. (7)

We have seen that there are W channel uses per second if we constrain the bandwidth of
the analog transmit voltage waveform to W Hz. How does the variance of the additive noise
w[m] depend on the bandwidth W? To understand this, we could look at the (random)
noise waveform w(t) and it’s (random) Fourier transform. Since noise waveforms are power
signals, i.e.,

lim —/T W) dt = o0 (8)

the Fourier transform is not well defined. To avoid this problem we could consider the
time-restricted noise waveform

w2 § 0O TSt=T )

which is an energy signal. We denote the Fourier transform of wr(t) by Wr(f). The average
variance of the Fourier transform of the time-restricted noise in the limit of no restriction is
called the power spectral density:

def

PSDy () % Tim —Var (Wr(f)). (10)

T—oo 27T

Based on measurements of additive noise, a common model for the power spectral density
is that it is constant, denoted by %, measured in Watts/Hz. Furthermore this model holds
over a very wide range of frequencies of interest to communication engineers: practical
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Figure 6: Capacity as a function of bandwidth for SNR per Hz 2P/N, = 10°.

measurement data suggests a value of about 1074 Watts/Hz for Ny. With a (double sided)
bandwidth of W, the total area under the power spectral density is

/2 PSD(f) df = oW (11)

w 2
2

It turns out that the variance of the noise sample w[m/|, at time sample m, is ezactly equal
to the expression in Equation (11)! This remarkable calculation is explored in a homework
exercise. So, we conclude that the variance of the noise sample increases in direct proportion
to the bandwidth W.

We can now put together these observations into our earlier discussion of the capacity

of the discrete time AWGN channel to arrive at the capacity of the analog (or continuous
time) AWGN channel:

w 2P :
C = 7103;2 (1 + NOW) bits/s. (12)

Here the transmit power constraint is denoted by P and is measured in Watts. Now we can
see how the capacity depends on the bandwidth WW. Surely the capacity can only increase as
W increases (one can always ignore the extra bandwidth). One can directly show that the
capacity is a concave function of the bandwidth W (this is explored in an exercise). Figure 6
plots the variation of the capacity as a function of bandwidth for an exemplar value of SNR
per Hz.

Two important implications follow:

e When the bandwidth is small, the capacity is very sensitive to changes in bandwidth:
this is because the SNR per Hz is quite large and then the capacity is pretty much
linearly related to the bandwidth. This is called the bandwidth limited regime.



e When the bandwidth is large, the SNR per Hz is small and

W 2P W/ 2P
2 og, (1 ~ 2 (=), 1
2 Og?( +NOW) 2 <N0W> 082¢ (13)
p
= mlogze. (14)

In this regime, the capacity is proportional to the total power P received over the
whole band. It is insensitive to the bandwidth and increasing the bandwidth has only
a small impact on capacity. On the other hand, the capacity is now linear in the
received power and increasing power does have a significant effect. This is called the
power limited regime.

As W increases, the capacity increases monotonically and reaches the asymptotic limit
P :
Cx = —logy e bits/s. (15)
No

This is the capacity of the AWGN channel with only a power constraint and no bandwidth
constraint. It is important to see that the capacity is finite even though the bandwidth is
not. The connection of this expression to energy efficient communication is explored in a
homework exercise.

Looking Ahead

Starting next lecture, we shift gears and start looking at communication over wires. We
start by looking at how a wireline channel affects voltage waveforms passing through it. We
will be able to arrive at a discrete time wireline channel model by combining the effect of the
wire on the voltage waveforms passing through it along with the DAC and ADC operations.



