EE 121: Introduction to Digital Communication Systems

Problem Set for Discussion Section 2

Mon 2/4/2007 and Wed 2/6/2007

1. A computer generates a number X according to a known distribution $\operatorname{Pr}(X=k)$, $k \in\{1,2, \ldots, M\}$. A player tries to guess that number by asking questions "Is X in set A ?" and the computer answers "yes" or "no". What strategy should the player use to minimize the average number of questions asked?
2. A discrete memoryless source emits i.i.d. random symbols X_{1}, X_{2}, \ldots. Each random symbol X has the symbols $\{a, b, c\}$ with probabilities $\{0.5,0.4,0.1\}$, respectively.
(a) Find the average length $L_{\min }$ of the best variable-length prefix-free code for X.
(b) Find the average length $L_{\min , 2}$, normalized to bits/symbol, of the best variable-length prefix-free code for X^{2}.
(c) Is it true that for any discrete memoryless source, $L_{\min } \geq L_{\min , 2}$? Explain.
3. For a discrete memoryless source X with alphabet $\mathcal{X}=\{1,2, \ldots, M\}$ let $L_{\min , 1}, L_{\text {min }, 2}$ and $L_{\min , 3}$ be the normalized average length in bits per source symbol for a Huffman code over $\mathcal{X}, \mathcal{X}^{2}$ and \mathcal{X}^{3}, respectively. What does it mean for a code to be over \mathcal{X}^{n} ? Show that $L_{\min , 3} \leq \frac{2}{3} L_{\min , 2}+\frac{1}{3} L_{\text {min }, 1}$.
