EE 121: Introduction to Digital Communication Systems

Problem Set for Discussion Section 2

Mon 2/4/2007 and Wed 2/6/2007

1. A computer generates a number X according to a known distribution Pr(X = k), $k \in \{1, 2, ..., M\}$. A player tries to guess that number by asking questions "Is X in set A?" and the computer answers "yes" or "no". What strategy should the player use to minimize the average number of questions asked?

2. A discrete memoryless source emits i.i.d. random symbols X_1, X_2, \ldots Each random symbol X has the symbols $\{a, b, c\}$ with probabilities $\{0.5, 0.4, 0.1\}$, respectively.

(a) Find the average length L_{\min} of the best variable-length prefix-free code for X.

(b) Find the average length $L_{\min,2}$, normalized to bits/symbol, of the best variable-length prefix-free code for X^2 .

(c) Is it true that for any discrete memoryless source, $L_{\min} \ge L_{\min,2}$? Explain.

3. For a discrete memoryless source X with alphabet $\mathcal{X} = \{1, 2, ..., M\}$ let $L_{\min,1}, L_{\min,2}$ and $L_{\min,3}$ be the normalized average length in bits per source symbol for a Huffman code over $\mathcal{X}, \mathcal{X}^2$ and \mathcal{X}^3 , respectively. What does it mean for a code to be over \mathcal{X}^n ? Show that $L_{\min,3} \leq \frac{2}{3}L_{\min,2} + \frac{1}{3}L_{\min,1}$.