EE 121: Introduction to Digital Communication Systems

Problem Set for Discussion Section 6

Wed 3/5/2008 and Mon 3/10/2008

1. Consider the reception of a QAM data symbol in additive white Gaussian noise

$$
\binom{Y_{1}}{Y_{2}}=\binom{X_{1}}{X_{2}}+\binom{W_{1}}{W_{2}}
$$

$\mathbf{X}=\left[X_{1} X_{2}\right]^{T}$ takes on one of four values $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}$ with equal probability. The average power constraint is $E\left[X_{1}^{2}\right]+E\left[X_{2}^{2}\right] \leq 2 E$. Both W_{1} and W_{2} have variance σ^{2}.
(a) What values should be chosen for $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}$ in order to minimize the probability of error for the optimal detector?
(b) What are the decision regions for the optimal detector, given your choice of $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}$?
(c) Calculate the probability of error for the optimal detector. Give an approximate expression for the probability of error when the ratio E / σ^{2} is large.
(d) Suppose $P\left(\mathbf{X}=\mathbf{x}_{1}\right)=0$ and $P\left(\mathbf{X}=\mathbf{x}_{i}\right)=1 / 3$ for $i=2,3,4$. Repeat parts (a)-(c).

