EE 121: Introduction to Digital Communication Systems

Problem Set for Discussion Section 6

Wed 3/5/2008 and Mon 3/10/2008

1. Consider the reception of a QAM data symbol in additive white Gaussian noise

$$\left(\begin{array}{c}Y_1\\Y_2\end{array}\right) = \left(\begin{array}{c}X_1\\X_2\end{array}\right) + \left(\begin{array}{c}W_1\\W_2\end{array}\right).$$

 $\mathbf{X} = [X_1 \ X_2]^T$ takes on one of four values $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ with equal probability. The average power constraint is $E[X_1^2] + E[X_2^2] \leq 2E$. Both W_1 and W_2 have variance σ^2 .

(a) What values should be chosen for $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ in order to minimize the probability of error for the optimal detector?

(b) What are the decision regions for the optimal detector, given your choice of $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$?

(c) Calculate the probability of error for the optimal detector. Give an approximate expression for the probability of error when the ratio E/σ^2 is large.

(d) Suppose $P(\mathbf{X} = \mathbf{x}_1) = 0$ and $P(\mathbf{X} = \mathbf{x}_i) = 1/3$ for i = 2, 3, 4. Repeat parts (a)-(c).