EE 121: Introduction to Digital Communication Systems

Problem Set for Discussion Section 9

Wed 4/2/2008 and Mon 4/7/2008

1. (Random block codes) Consider a random block code represented by a matrix \mathbf{G} with 2^{T} rows and $2^{R T}$ columns, where $R \leq 1$. The $2^{R T^{2}}$ entries in \mathbf{G} are independent random variables, taking on values either 0 or 1 with equal probability. The minimum distance $d_{\min }$ of this block code is a random variable. We are interested in the distribution of the minimum distance in the limit of large blocklength, i.e. $T \rightarrow \infty$.
(a) Using the union bound, show that

$$
\operatorname{Pr}\left(d_{\min } \leq k\right) \leq 2^{R T} \operatorname{Pr}\left(w_{i} \leq k\right)
$$

where the random variable w_{i} is the weight of the i th codeword in the code, where $i>1$, the 1st codeword being the all-zeros codeword.
(b) Find an expression for $\operatorname{Pr}\left(w_{i} \leq k\right)$ in terms of k and T.
(c) Use the bound $P(X \leq k) \leq \exp \left(-2(n p-k)^{2} / n\right)$ for a binomial random variable $B(n, p)$ to show that if

$$
R<2(\epsilon-1 / 2)^{2} \log _{2} e
$$

the probability the minimum distance is less than ϵT goes to zero as $T \rightarrow \infty$.
(d) Based on the answer to part (c), for what rates can we say that reliable communication over a binary symmetric channel with crossover probability p is possible?

