EE 121 - Introduction to Digital Communications Homework 1 Solutions

January 30, 2008

1 (a)

$$
\begin{aligned}
E[V+W] & =\sum_{v \in \mathcal{V}} \sum_{w \in \mathcal{W}}(v+w) \operatorname{Pr}(v, w) \\
& =\sum_{v \in \mathcal{V}} \sum_{w \in \mathcal{W}} v \operatorname{Pr}(v, w)+\sum_{v \in \mathcal{V}} \sum_{w \in \mathcal{W}} w \operatorname{Pr}(v, w) \\
& =\sum_{v \in \mathcal{V}} v \sum_{w \in \mathcal{W}} \operatorname{Pr}(v, w)+\sum_{v \in \mathcal{V}} w \sum_{w \in \mathcal{W}} \operatorname{Pr}(v, w) \\
& =\sum_{v \in \mathcal{V}} v \operatorname{Pr}(v)+\sum_{v \in \mathcal{V}} w \operatorname{Pr}(w) \\
& =E[V]+E[W]
\end{aligned}
$$

(b)

$$
\begin{aligned}
E[V W] & =\sum_{v \in \mathcal{V}} \sum_{w \in \mathcal{W}} v w \operatorname{Pr}(v, w) \\
& =\sum_{v \in \mathcal{V}} \sum_{w \in \mathcal{W}} v w \operatorname{Pr}(v) \operatorname{Pr}(w) \\
& =\left(\sum_{v \in \mathcal{V}} v \operatorname{Pr}(v)\right)\left(\sum_{v \in \mathcal{V}} w \operatorname{Pr}(w)\right) \\
& =E[V] E[W] .
\end{aligned}
$$

(c) Assume V is either 1 or -1 with probability 0.5 and also $\mathrm{W}=\mathrm{V}$. Then it is clear that

$$
0=E[V]=E[W]=E[V] E[W] \neq E[V W]=1 .
$$

For the equality assume that V is uniform on $\{-1,0,1\}$ and W is zero when V is not zero and is one otherwise. It is clear that $\operatorname{Pr}(V=0, W=0)=0 \neq \operatorname{Pr}(V=0) \operatorname{Pr}(W=0)$ therefore V and W are not independent. On the other hand $E[V W]=0=E[V] E[W]$.
(d)

$$
\begin{aligned}
\sigma_{v+w}^{2} & =E\left[(V+W)^{2}\right]-E^{2}[V+W] \\
& =E\left[V^{2}+2 V W+W^{2}\right]-(E[V]+E[W])^{2} \\
& =E\left[V^{2}\right]+2 E[V] E[W]+E\left[W^{2}\right]-E^{2}[V]-2 E[V] E[W]-E^{2}[W] \\
& =E\left[V^{2}\right]-E^{2}[V]+E\left[W^{2}\right]-E^{2}[W] \\
& =\sigma_{v}^{2}+\sigma_{w}^{2} .
\end{aligned}
$$

2 (a) Yes it is. Proof by induction on n. For $n=2$ it is easy to verify that

$$
P(Z=0)=P(Z=1)=\frac{1}{2} .
$$

Also $\operatorname{Pr}\left(Z=1, X_{1}=1\right)=\operatorname{Pr}\left(X_{1}=1, X_{2}=0\right)=\frac{1}{4}=\operatorname{Pr}(Z=1) \operatorname{Pr}\left(X_{1}=1\right)$. It is also easy to verify that for all other three possible choices of Z and X_{1} we have $\operatorname{Pr}\left(Z, X_{1}\right)=$ $\frac{1}{4}=\operatorname{Pr}(Z) \operatorname{Pr}\left(X_{1}\right)$ therefore Z and X_{1} are independent. Now assume that Z and X_{1} are independent for $\mathrm{n}=\mathrm{k}$, we prove it for $\mathrm{n}=\mathrm{k}+1$: let

$$
Z_{k}=X_{1} \oplus \cdots \oplus X_{k}
$$

and

$$
Z_{k+1}=X_{1} \oplus \cdots \oplus X_{k+1}=Z_{k} \oplus X_{k+1}
$$

Now since Z_{k} and X_{k+1} are independent of X_{1} therefore $Z_{k+1}=Z_{k} \oplus X_{k}$ is also independent of X_{1}.
(b) Yes because

$$
\operatorname{Pr}\left(Z \mid X_{1}, \ldots, X_{n-1}\right)=\operatorname{Pr}\left(X_{n}=Z \oplus X_{1} \oplus \cdots \oplus X_{n-1} \mid X_{1}, \ldots, X_{n-1}\right)=\operatorname{Pr}(Z)=\frac{1}{2}
$$

therefore

$$
\operatorname{Pr}\left(Z, X_{1}, \ldots, X_{n-1}\right)=\operatorname{Pr}(Z) \operatorname{Pr}\left(X_{1}, \ldots, X_{n-1}\right)=\operatorname{Pr}(Z) \operatorname{Pr}\left(X_{1}\right) \ldots \operatorname{Pr}\left(X_{n-1}\right)
$$

(c) No, because given X_{1}, \ldots, X_{n} we completely know Z.
(d) Assume $n=2$ and $\operatorname{Pr}\left(X_{i}=1\right)=p \neq \frac{1}{2}$ and $\operatorname{Pr}\left(X_{i}=0\right)=1-p$ for $i=1,2$. Then we have $\operatorname{Pr}(Z=1)=2 p(1-p)$ and $\operatorname{Pr}(Z=0)=p^{2}+(1-p)^{2}$. Therefore

$$
\operatorname{Pr}\left(Z=1, X_{1}=1\right)=\operatorname{Pr}\left(X_{2}=0, X_{1}=1\right)=p(1-p) \neq 2 p(1-p) p
$$

3 (a) Let X denote the input r.v. and Y the output r.v.. From Bayes law

$$
\begin{aligned}
p_{1} & =\operatorname{Pr}(X=1 \mid Y=1) \\
& =\frac{\operatorname{Pr}(Y=1 \mid X=1) \operatorname{Pr}(X=1)}{\operatorname{Pr}(Y=1 \mid X=0) \operatorname{Pr}(X=0)+\operatorname{Pr}(Y=1 \mid X=1) \operatorname{Pr}(X=1)} \\
& =\frac{(1-\epsilon)(1-p)}{\epsilon p+(1-\epsilon)(1-p)}
\end{aligned}
$$

(b) For this part let Y_{1} denote the first output r.v. and Y_{2} the second.

$$
\begin{aligned}
p_{2} & =\operatorname{Pr}\left(X=1 \mid Y_{1}=1, Y_{2}=1\right) \\
& =\frac{\operatorname{Pr}\left(Y_{2}=1 \mid X=1, Y_{1}=1\right) \operatorname{Pr}\left(X=1 \mid Y_{1}=1\right)}{\operatorname{Pr}\left(Y_{2}=1 \mid Y_{1}=1\right)} \\
& =\frac{\operatorname{Pr}\left(Y_{2}=1 \mid X=1, Y_{1}=1\right) \operatorname{Pr}\left(X=1 \mid Y_{1}=1\right)}{\operatorname{Pr}\left(Y_{2}=1 \mid Y_{1}=1, X=1\right) P\left(X=1 \mid Y_{1}=1\right)+P\left(Y_{2}=1 \mid Y_{1}=1, X=0\right) P\left(X=0 \mid Y_{1}=1\right)} .
\end{aligned}
$$

As Y_{1} and Y_{2} are conditionally independent given X we have

$$
\begin{aligned}
p_{2} & =\frac{\operatorname{Pr}\left(Y_{2}=1 \mid X=1\right) \operatorname{Pr}\left(X=1 \mid Y_{1}=1\right)}{\operatorname{Pr}\left(Y_{2}=1 \mid X=1\right) P\left(X=1 \mid Y_{1}=1\right)+P\left(Y_{2}=1 \mid X=0\right) P\left(X=0 \mid Y_{1}=1\right)} \\
& =\frac{(1-\epsilon) p_{1}}{(1-\epsilon) p_{1}+\epsilon\left(1-p_{1}\right)}
\end{aligned}
$$

(c) Using Bayes law we have

$$
\begin{aligned}
p_{n} & =\operatorname{Pr}\left(X=1 \mid Y_{1}=1, \ldots, Y_{n}=1\right) \\
& =\frac{\operatorname{Pr}\left(Y_{1}=1, \ldots, Y_{n}=1 \mid X=1\right) \operatorname{Pr}(X=1)}{\operatorname{Pr}\left(Y_{1}=1, \ldots, Y_{n}=1 \mid X=0\right) \operatorname{Pr}(X=0)+\operatorname{Pr}\left(Y_{1}=1, \ldots, Y_{n}=1 \mid X=1\right) \operatorname{Pr}(X=1)}
\end{aligned}
$$

As the Y_{1}, \ldots, Y_{n} are conditionally independent given X we have

$$
\begin{aligned}
p_{n} & =\frac{\prod_{i=1}^{n} \operatorname{Pr}\left(Y_{i}=1 \mid X=1\right) \operatorname{Pr}(X=1)}{\prod_{i=1}^{n} \operatorname{Pr}\left(Y_{i}=1 \mid X=0\right) \operatorname{Pr}(X=0)+\prod_{i=1}^{n} \operatorname{Pr}\left(Y_{i}=1 \mid X=1\right) \operatorname{Pr}(X=1)} \\
& =\frac{(1-\epsilon)^{n}(1-p)}{\epsilon^{n} p+(1-\epsilon)^{n}(1-p)}
\end{aligned}
$$

This function is plotted in figure 1 . By writing p_{n} like so

$$
\begin{aligned}
p_{n} & =\frac{1}{\frac{\epsilon^{n} p}{(1-\epsilon)^{n}(1-p)}+1} \\
& =\frac{1}{\frac{p}{(1 / \epsilon-1)^{n}(1-p)}+1}
\end{aligned}
$$

Figure 1: p_{n} versus n for sample values of ϵ and p.
we see that for $\epsilon<0.5, p_{n} \rightarrow 1$ as $n \rightarrow \infty$ and for $\epsilon>0.5, p_{n} \rightarrow 0$ as $n \rightarrow \infty$.

4 (a) Y_{n} is a binomial r.v. and thus has PMF

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{n}=x\right) & =\operatorname{Pr}\left(\frac{1}{n} \sum_{t=1}^{n} X_{t}=x\right) \\
& =\operatorname{Pr}\left(\sum_{t=1}^{n} X_{t}=n x\right) \\
& =\binom{n}{n x} p^{n x}(1-p)^{n(1-x)}
\end{aligned}
$$

where $n x$ is an integer. This function is plotted in figure 2 for several values of n. The plots show that as $n \rightarrow \infty$ the probability of deviating from the mean by more than a fixed amount diminishes as $n \rightarrow \infty$, i.e. they support the statement that for any $\epsilon>0$, $\operatorname{Pr}\left(\left|Y_{n}-p\right|>\epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$.
(b) Let $I_{\left\{X_{i}=n\right\}}$ be the indicator random variable for the event $\left\{X_{i}=n\right\}$, i.e.

$$
I_{\left\{X_{i}=n\right\}}= \begin{cases}0, & \text { if } X_{i} \neq n \\ 1, & \text { if } X_{i}=n\end{cases}
$$

Suppose we observe symbols $X_{1}, X_{2}, \ldots, X_{N}$. Estimate the pmf of X_{i} by counting the number of occurrences of each symbol, i.e.

$$
\hat{P}\left(X_{i}=n\right)=\frac{1}{N} \sum_{i=1}^{N} I_{\left\{X_{i}=n\right\}} .
$$

Note that the estimate $\hat{P}\left(X_{i}=n\right)$ is a random variable. From the law of large numbers we know that as $n \rightarrow \infty$

$$
\begin{aligned}
\hat{P}\left(X_{i}=n\right) & \rightarrow E\left[\frac{1}{N} \sum_{i=1}^{N} I_{\left\{X_{i}=n\right\}}\right] \\
& =\left[\frac{1}{N} \sum_{i=1}^{N} E\left[I_{\left\{X_{i}=n\right\}}\right]\right. \\
& =\left[\frac{1}{N} \sum_{i=1}^{N} \operatorname{Pr}\left(X_{i}=n\right)\right] \\
& =\operatorname{Pr}\left(X_{i}=n\right)
\end{aligned}
$$

in probability, and thus our estimated pmf converges to the true pmf.

Figure 2: PMF of Y_{n} for different values of n and a favorite value of $p=0.3$.

5 (a) The proof of being uniquely decodable is the same as the prefix free codes except we just need to start decoding from the end of the stream.
(b)

$$
\begin{cases}a: & 1 \\ b: & 10 \\ c: & 00\end{cases}
$$

We can start decoding after receiving the last bit. Therefore the decoder might have to wait a long time before it can start decoding.
(c) Assume the codeword of length one is 1 . Then if the code is prefix free the other two should start with 0 therefore one is 01 and the other is 00 and clearly it is not a suffix free code. The same argument applies when the codeword of length one is 0 .

