
EE 121 - Introduction to Digital Communications
Homework 1 Solutions

January 30, 2008

1 (a)

E[V + W ] =
∑
v∈V

∑
w∈W

(v + w) Pr(v, w)

=
∑
v∈V

∑
w∈W

v Pr(v, w) +
∑
v∈V

∑
w∈W

w Pr(v, w)

=
∑
v∈V

v
∑
w∈W

Pr(v, w) +
∑
v∈V

w
∑
w∈W

Pr(v, w)

=
∑
v∈V

v Pr(v) +
∑
v∈V

w Pr(w)

= E[V ] + E[W ]

(b)

E[V W ] =
∑
v∈V

∑
w∈W

vw Pr(v, w)

=
∑
v∈V

∑
w∈W

vw Pr(v) Pr(w)

=

(∑
v∈V

v Pr(v)

)(∑
v∈V

w Pr(w)

)

= E[V ]E[W ].

(c) Assume V is either 1 or -1 with probability 0.5 and also W=V. Then it is clear that

0 = E[V ] = E[W ] = E[V ]E[W ] 6= E[V W ] = 1.

For the equality assume that V is uniform on {−1, 0, 1} and W is zero when V is not zero
and is one otherwise. It is clear that Pr(V = 0,W = 0) = 0 6= Pr(V = 0) Pr(W = 0)
therefore V and W are not independent. On the other hand E[V W ] = 0 = E[V ]E[W ].
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(d)

σ2
v+w = E[(V + W )2]− E2[V + W ]

= E[V 2 + 2V W + W 2]− (E[V ] + E[W ])2

= E[V 2] + 2E[V ]E[W ] + E[W 2]− E2[V ]− 2E[V ]E[W ]− E2[W ]

= E[V 2]− E2[V ] + E[W 2]− E2[W ]

= σ2
v + σ2

w.

2 (a) Yes it is. Proof by induction on n. For n = 2 it is easy to verify that

P (Z = 0) = P (Z = 1) =
1

2
.

Also Pr(Z = 1, X1 = 1) = Pr(X1 = 1, X2 = 0) = 1
4

= Pr(Z = 1) Pr(X1 = 1). It is also
easy to verify that for all other three possible choices of Z and X1 we have Pr(Z, X1) =
1
4

= Pr(Z) Pr(X1) therefore Z and X1 are independent. Now assume that Z and X1 are
independent for n=k, we prove it for n=k+1: let

Zk = X1 ⊕ · · · ⊕Xk

and
Zk+1 = X1 ⊕ · · · ⊕Xk+1 = Zk ⊕Xk+1

Now since Zk and Xk+1 are independent of X1 therefore Zk+1 = Zk⊕Xk is also independent
of X1.

(b) Yes because

Pr(Z|X1, . . . , Xn−1) = Pr(Xn = Z ⊕X1 ⊕ · · · ⊕Xn−1|X1, . . . , Xn−1) = Pr(Z) =
1

2

therefore

Pr(Z, X1, . . . , Xn−1) = Pr(Z) Pr(X1, . . . , Xn−1) = Pr(Z) Pr(X1) . . . Pr(Xn−1)

(c) No, because given X1, . . . , Xn we completely know Z.

(d) Assume n = 2 and Pr(Xi = 1) = p 6= 1
2

and Pr(Xi = 0) = 1− p for i = 1, 2. Then we
have Pr(Z = 1) = 2p(1− p) and Pr(Z = 0) = p2 + (1− p)2. Therefore

Pr(Z = 1, X1 = 1) = Pr(X2 = 0, X1 = 1) = p(1− p) 6= 2p(1− p)p.
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3 (a) Let X denote the input r.v. and Y the output r.v.. From Bayes law

p1 = Pr(X = 1|Y = 1)

=
Pr(Y = 1|X = 1) Pr(X = 1)

Pr(Y = 1|X = 0) Pr(X = 0) + Pr(Y = 1|X = 1) Pr(X = 1)

=
(1− ε)(1− p)

εp + (1− ε)(1− p)

(b) For this part let Y1 denote the first output r.v. and Y2 the second.

p2 = Pr(X = 1|Y1 = 1, Y2 = 1)

=
Pr(Y2 = 1|X = 1, Y1 = 1) Pr(X = 1|Y1 = 1)

Pr(Y2 = 1|Y1 = 1)

=
Pr(Y2 = 1|X = 1, Y1 = 1) Pr(X = 1|Y1 = 1)

Pr(Y2 = 1|Y1 = 1, X = 1)P (X = 1|Y1 = 1) + P (Y2 = 1|Y1 = 1, X = 0)P (X = 0|Y1 = 1)
.

As Y1 and Y2 are conditionally independent given X we have

p2 =
Pr(Y2 = 1|X = 1) Pr(X = 1|Y1 = 1)

Pr(Y2 = 1|X = 1)P (X = 1|Y1 = 1) + P (Y2 = 1|X = 0)P (X = 0|Y1 = 1)

=
(1− ε)p1

(1− ε)p1 + ε(1− p1)
.

(c) Using Bayes law we have

pn = Pr(X = 1|Y1 = 1, . . . , Yn = 1)

=
Pr(Y1 = 1, . . . , Yn = 1|X = 1) Pr(X = 1)

Pr(Y1 = 1, . . . , Yn = 1|X = 0) Pr(X = 0) + Pr(Y1 = 1, . . . , Yn = 1|X = 1) Pr(X = 1)

As the Y1, . . . , Yn are conditionally independent given X we have

pn =

∏n
i=1 Pr(Yi = 1|X = 1) Pr(X = 1)∏n

i=1 Pr(Yi = 1|X = 0) Pr(X = 0) +
∏n

i=1 Pr(Yi = 1|X = 1) Pr(X = 1)

=
(1− ε)n(1− p)

εnp + (1− ε)n(1− p)

This function is plotted in figure 1. By writing pn like so

pn =
1

εnp
(1−ε)n(1−p)

+ 1

=
1

p
(1/ε−1)n(1−p)

+ 1
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Figure 1: pn versus n for sample values of ε and p.
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we see that for ε < 0.5, pn → 1 as n →∞ and for ε > 0.5, pn → 0 as n →∞.

4 (a) Yn is a binomial r.v. and thus has PMF

Pr(Yn = x) = Pr

(
1

n

n∑
t=1

Xt = x

)

= Pr

(
n∑

t=1

Xt = nx

)

=

(
n

nx

)
pnx(1− p)n(1−x)

where nx is an integer. This function is plotted in figure 2 for several values of n. The
plots show that as n → ∞ the probability of deviating from the mean by more than a
fixed amount diminishes as n → ∞, i.e. they support the statement that for any ε > 0,
Pr (|Yn − p| > ε) → 0 as n →∞.

(b) Let I{Xi=n} be the indicator random variable for the event {Xi = n}, i.e.

I{Xi=n} =

{
0, if Xi 6= n
1, if Xi = n.

Suppose we observe symbols X1, X2, . . . , XN . Estimate the pmf of Xi by counting the
number of occurrences of each symbol, i.e.

P̂ (Xi = n) =
1

N

N∑
i=1

I{Xi=n}.

Note that the estimate P̂ (Xi = n) is a random variable. From the law of large numbers we
know that as n →∞

P̂ (Xi = n) → E

[
1

N

N∑
i=1

I{Xi=n}

]

=

[
1

N

N∑
i=1

E[I{Xi=n}]

]

=

[
1

N

N∑
i=1

Pr(Xi = n)

]

= Pr(Xi = n)

in probability, and thus our estimated pmf converges to the true pmf.
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Figure 2: PMF of Yn for different values of n and a favorite value of p = 0.3.

6



5 (a) The proof of being uniquely decodable is the same as the prefix free codes except we
just need to start decoding from the end of the stream.

(b) 



a : 1
b : 10
c : 00

We can start decoding after receiving the last bit. Therefore the decoder might have to
wait a long time before it can start decoding.

(c) Assume the codeword of length one is 1. Then if the code is prefix free the other two
should start with 0 therefore one is 01 and the other is 00 and clearly it is not a suffix free
code. The same argument applies when the codeword of length one is 0.
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