
EE 121 - Introduction to Digital Communications
Homework 3 Solutions

February 10, 2008

1 (a)

H(X1, X2) = −
∑
x1

∑
x2

Pr(X1 = x1, X2 = x2) log Pr(X1 = x1, X2 = x2)

= −
∑
x1

∑
x2

Pr(X1 = x1, X2 = x2) log Pr(X1 = x1) Pr(X2 = x2|X1 = x1)

= −
∑
x1

∑
x2

Pr(X1 = x1, X2 = x2) log Pr(X1 = x1)

−
∑
x1

∑
x2

Pr(X1 = x1, X2 = x2) log Pr(X2 = x2|X1 = x1)

= −
∑
x1

Pr(X1 = x1) log Pr(X1 = x1)

−
∑
x1

∑
x2

Pr(X1 = x1, X2 = x2) log Pr(X2 = x2|X1 = x1)

= H(X1) + H(X2|X1)

(b) By application of part (a) we have

H(X1, X2, X3) = H(X1) + H(X2, X3|X1)

= H(X1) + H(X2|X1) + H(X3|X2, X1)

(c) If X1 and X3 are conditionally independent given X2 then Pr(X3|X1, X2) = Pr(X3|X2).
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Thus

H(X3|X2, X1) =
∑
x1

∑
x2

Pr(X1 = x1, X2 = x2)

∑
x3

Pr(X3 = x3|X2 = x2, X1 = x1) log Pr(X3 = x3|X2 = x2, X1 = x1)

=
∑
x1

∑
x2

Pr(X1 = x1, X2 = x2)

∑
x3

Pr(X3 = x3|X2 = x2) log Pr(X3 = x3|X2 = x2)

=
∑
x2

Pr(X2 = x2)
∑
x3

Pr(X3 = x3|X2 = x2) log Pr(X3 = x3|X2 = x2)

= H(X3|X2)

2 (a) A probability distribution π(x) is a stationary distribution for a Markov chain with
states x ∈ S if ∑

x∈S
π(x) Pr(x, y) = π(y) (1)

for all states y ∈ S, where Pr(x, y) is the probability of transitioning from state x to state
y. For the Mickey mouse chain the stationary distribution is π(1) = 1/2 and π(2) = 1/2
for α ∈ [0, 1). For α = 1 the Markov chain is reducible and the stationary distribution is
not unique, in fact all distributions π(x) are stationary in this case, as can be verified from
equation (1).

(b) Let α denote the self-transition probability.

Pr(Xn = 0) = α Pr(Xn−1 = 0) + (1− α)(1− Pr(Xn−1 = 0))

= 1− α + (2α− 1)P (Xn−1 = 0)

The solution to the difference equation yn = a + byn−1 is yn = a(1− bn−1)/(1− b) + bn−1y1.
Thus for α 6= 0 the distribution is

Pr(Xn = 0) =
(1− α)(1− (2α− 1)n−1)

2α
+ (2α− 1)n−1p

and Pr(Xn = 1) = 1 − Pr(Xn = 0). For α = 0 we get Pr(Xn = 0) = p if n is odd and
Pr(Xn = 0) = 1 − p if n is even. For all p and α ∈ (0, 1) the distribution of Xn always
converges to the stationary distribution but for α = 0 the distribution of Xn is always equal
to the stationary distribution for p = 1/2 but never equal to it for p 6= 1/2.
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(c)

H = lim
n→∞

H(X1, . . . , Xn)

n

= lim
n→∞

1

n
H(X1) +

1

n

n∑
i=2

H(Xn|Xn−1)

= lim
n→∞

1

n

n∑
i=2

H(Xn|Xn−1).

For α /∈ {0, 1} we have

H = H(X2|X1)

= −α log α− (1− α) log(1− α)

and for α ∈ {0, 1} we have H(Xn|Xn−1) = 0 so H = 0. Thus the limit exists for all α
but its value depends on whether α ∈ {0, 1} or not. It does not depend on the initial
distribution.

(d) Solving equation (1) for the stationary distribution we have

π(0) =
α1 − 1

α0 + α1 − 2
.

and π(1) = 1 − π(0). The entropy rate exists for all α0, α1 ∈ [0, 1] but it’s value is zero if
either of the αi = 1. The entropy rate does not depend on the initial distribution.

3 (a) The Huffman coding algorithm groups the 0.1 and 0.4 probability symbols into a
supersymbol of probability 0.5 and then groups this with the 0.5 probability symbol. The
codeword assignments are thus a = 0, b = 10 and c = 11. The expected length is then
Lmin = 0.5 ∗ 1 + 0.4 ∗ 2 + 0.1 ∗ 2 = 1.5 bits/symbol.

(b) Now X2 ∈ {aa, ab, ac, ba, bb, bc, ca, cb, cc} with probabilities

{0.25, 0.2, 0.05, 0.2, 0.16, 0.04, 0.05, 0.04, 0.01},

respectively. Creating a Huffman tree and assigning codewords results in an average length
of 2.75 bits per X2 symbol which is Lmin,2 = 1.375 bits/symbol.

(c) By concatenating two identical versions of the code for X from part (a) we can create
a prefix-free code for X2. The average length of this code is 2Lmin bits per X2 symbol or
Lmin bits per symbol. As this average length must be either equal to or longer than the
average length of the optimal code we have Lmin ≥ Lmin,2.
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4 (a) It is uniquely decodable because at each step if the decoder reads 0 then it will read
the next 3 bits and convert them to integer and decode correctly. If it reads 1 then it will
decode 8 a’s and move to the next code.

(b)

E[number of bits per B] =
∞∑
i=0

(i + 4)P{8i+k consecutive a’s for some 0 ≤ k ≤ 7 }

=
∞∑
i=0

(i + 4)
(
0.98i + . . . + 0.98i+7

)
0.1

=
∞∑
i=0

(i + 4)0.98i
(
1− 0.98

)

= (1− 0.98)

(
4

1− 0.98
+

∞∑
i=0

i(0.9)8i

)

= 4 + (1− 0.98)
0.98

1− 0.98

1

1− 0.98
≈ 4.75

(c) Define the random variable Yi to be equal to 1 if we have b at position i, otherwise zero.
We are interested in

1

n

n∑
i=1

Yi

By WLLN for any ε > 0 we have,

P{| 1
n

n∑
i=1

Yi − E[Y ]| ≥ ε} → 0, as n increases

Since E[Y ] = 0.1 it gives the desired result.

(d) 0.1× 4.75 = 0.475.

5 (a) Initially encode the window with 1024 bits then

Window Pointer Encoded String (u,n) log w 2blog nc+ 1 total bits
1024 (1,3976) 10 23 33
5000 (1,1) 0 2 2
5001 (1,3999) 10 23 33
9000 (1,1) 0 2 2
9001 (1,999) 10 19 29
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(b) number of bits=1024+33+2+33+2+29=1123

(c) Initially encode the window with 1024 bits then

Window Pointer Encoded String (u,n) log w 2blog nc+ 1 total bits
8 (1,4992) 3 25 28

5000 (1,1) 0 2 2
5001 (1,3999) 3 23 26
9000 (1,1) 0 2 2
9001 (1,999) 3 19 22

Number of bits=88.

(d) Create the markov chain such that:

P (Xi+1 = 1|Xi = 0) =
P (Xi+1 = 1, Xi = 0)

P (Xi = 0)

P (Xi+1 = 0|Xi = 1) =
P (Xi+1 = 0, Xi = 1)

P (Xi = 1)

Now the empirical average is a good estimate for these values:

P (Xi = 0) ≈ number of zeros

104
= 0.6

P (Xi = 1) ≈ number of ones

104
= 0.4

P (Xi+1 = 0, Xi = 1) ≈ number of (1-0)’s

104
= 10−4

P (Xi+1 = 1, Xi = 0) ≈ number of (0-1)’s

104
= 10−4

Therefore

P (Xi+1 = 1|Xi = 0) ≈ 1

6000

P (Xi+1 = 0|Xi = 1) ≈ 1

4000

(e) Assuming that the Markov chain is in stationary distribution,

lim
n→∞

H(X1, . . . , Xn)

n
= lim

n→∞
H(X1) + H(X2|X1) + H(X3|X2) + . . . + H(Xn|Xn−1)

n
= H(X2|X1)

Now

H(X2|X1) =
3

5
H(10−4) +

2

5
H(10−4) = H(10−4)
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