EE 121 - Introduction to Digital Communications Homework 3 Solutions

February 10, 2008

1 (a)

$$
\begin{aligned}
H\left(X_{1}, X_{2}\right)= & -\sum_{x_{1}} \sum_{x_{2}} \operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}\right) \log \operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}\right) \\
= & -\sum_{x_{1}} \sum_{x_{2}} \operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}\right) \log \operatorname{Pr}\left(X_{1}=x_{1}\right) \operatorname{Pr}\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) \\
= & -\sum_{x_{1}} \sum_{x_{2}} \operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}\right) \log \operatorname{Pr}\left(X_{1}=x_{1}\right) \\
& -\sum_{x_{1}} \sum_{x_{2}} \operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}\right) \log \operatorname{Pr}\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) \\
= & -\sum_{x_{1}} \operatorname{Pr}\left(X_{1}=x_{1}\right) \log \operatorname{Pr}\left(X_{1}=x_{1}\right) \\
& -\sum_{x_{1}} \sum_{x_{2}} \operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}\right) \log \operatorname{Pr}\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) \\
= & H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)
\end{aligned}
$$

(b) By application of part (a) we have

$$
\begin{aligned}
H\left(X_{1}, X_{2}, X_{3}\right) & =H\left(X_{1}\right)+H\left(X_{2}, X_{3} \mid X_{1}\right) \\
& =H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{2}, X_{1}\right)
\end{aligned}
$$

(c) If X_{1} and X_{3} are conditionally independent given X_{2} then $\operatorname{Pr}\left(X_{3} \mid X_{1}, X_{2}\right)=\operatorname{Pr}\left(X_{3} \mid X_{2}\right)$.

Thus

$$
\begin{aligned}
H\left(X_{3} \mid X_{2}, X_{1}\right)= & \sum_{x_{1}} \sum_{x_{2}} \operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}\right) \\
& \sum_{x_{3}} \operatorname{Pr}\left(X_{3}=x_{3} \mid X_{2}=x_{2}, X_{1}=x_{1}\right) \log \operatorname{Pr}\left(X_{3}=x_{3} \mid X_{2}=x_{2}, X_{1}=x_{1}\right) \\
= & \sum_{x_{1}} \sum_{x_{2}} \operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}\right) \\
& \sum_{x_{3}} \operatorname{Pr}\left(X_{3}=x_{3} \mid X_{2}=x_{2}\right) \log \operatorname{Pr}\left(X_{3}=x_{3} \mid X_{2}=x_{2}\right) \\
= & \sum_{x_{2}} \operatorname{Pr}\left(X_{2}=x_{2}\right) \sum_{x_{3}} \operatorname{Pr}\left(X_{3}=x_{3} \mid X_{2}=x_{2}\right) \log \operatorname{Pr}\left(X_{3}=x_{3} \mid X_{2}=x_{2}\right) \\
= & H\left(X_{3} \mid X_{2}\right)
\end{aligned}
$$

2 (a) A probability distribution $\pi(x)$ is a stationary distribution for a Markov chain with states $x \in \mathcal{S}$ if

$$
\begin{equation*}
\sum_{x \in \mathcal{S}} \pi(x) \operatorname{Pr}(x, y)=\pi(y) \tag{1}
\end{equation*}
$$

for all states $y \in \mathcal{S}$, where $\operatorname{Pr}(x, y)$ is the probability of transitioning from state x to state y. For the Mickey mouse chain the stationary distribution is $\pi(1)=1 / 2$ and $\pi(2)=1 / 2$ for $\alpha \in[0,1)$. For $\alpha=1$ the Markov chain is reducible and the stationary distribution is not unique, in fact all distributions $\pi(x)$ are stationary in this case, as can be verified from equation (1).
(b) Let α denote the self-transition probability.

$$
\begin{aligned}
\operatorname{Pr}\left(X_{n}=0\right) & =\alpha \operatorname{Pr}\left(X_{n-1}=0\right)+(1-\alpha)\left(1-\operatorname{Pr}\left(X_{n-1}=0\right)\right) \\
& =1-\alpha+(2 \alpha-1) P\left(X_{n-1}=0\right)
\end{aligned}
$$

The solution to the difference equation $y_{n}=a+b y_{n-1}$ is $y_{n}=a\left(1-b^{n-1}\right) /(1-b)+b^{n-1} y_{1}$. Thus for $\alpha \neq 0$ the distribution is

$$
\operatorname{Pr}\left(X_{n}=0\right)=\frac{(1-\alpha)\left(1-(2 \alpha-1)^{n-1}\right)}{2 \alpha}+(2 \alpha-1)^{n-1} p
$$

and $\operatorname{Pr}\left(X_{n}=1\right)=1-\operatorname{Pr}\left(X_{n}=0\right)$. For $\alpha=0$ we get $\operatorname{Pr}\left(X_{n}=0\right)=p$ if n is odd and $\operatorname{Pr}\left(X_{n}=0\right)=1-p$ if n is even. For all p and $\alpha \in(0,1)$ the distribution of X_{n} always converges to the stationary distribution but for $\alpha=0$ the distribution of X_{n} is always equal to the stationary distribution for $p=1 / 2$ but never equal to it for $p \neq 1 / 2$.
(c)

$$
\begin{aligned}
H & =\lim _{n \rightarrow \infty} \frac{H\left(X_{1}, \ldots, X_{n}\right)}{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}\right)+\frac{1}{n} \sum_{i=2}^{n} H\left(X_{n} \mid X_{n-1}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=2}^{n} H\left(X_{n} \mid X_{n-1}\right) .
\end{aligned}
$$

For $\alpha \notin\{0,1\}$ we have

$$
\begin{aligned}
H & =H\left(X_{2} \mid X_{1}\right) \\
& =-\alpha \log \alpha-(1-\alpha) \log (1-\alpha)
\end{aligned}
$$

and for $\alpha \in\{0,1\}$ we have $H\left(X_{n} \mid X_{n-1}\right)=0$ so $H=0$. Thus the limit exists for all α but its value depends on whether $\alpha \in\{0,1\}$ or not. It does not depend on the initial distribution.
(d) Solving equation (1) for the stationary distribution we have

$$
\pi(0)=\frac{\alpha_{1}-1}{\alpha_{0}+\alpha_{1}-2}
$$

and $\pi(1)=1-\pi(0)$. The entropy rate exists for all $\alpha_{0}, \alpha_{1} \in[0,1]$ but it's value is zero if either of the $\alpha_{i}=1$. The entropy rate does not depend on the initial distribution.

3 (a) The Huffman coding algorithm groups the 0.1 and 0.4 probability symbols into a supersymbol of probability 0.5 and then groups this with the 0.5 probability symbol. The codeword assignments are thus $a=0, b=10$ and $c=11$. The expected length is then $\bar{L}_{\text {min }}=0.5 * 1+0.4 * 2+0.1 * 2=1.5$ bits $/$ symbol.
(b) Now $X^{2} \in\{a a, a b, a c, b a, b b, b c, c a, c b, c c\}$ with probabilities

$$
\{0.25,0.2,0.05,0.2,0.16,0.04,0.05,0.04,0.01\}
$$

respectively. Creating a Huffman tree and assigning codewords results in an average length of 2.75 bits per X^{2} symbol which is $\bar{L}_{\text {min }, 2}=1.375 \mathrm{bits} / \mathrm{symbol}$.
(c) By concatenating two identical versions of the code for X from part (a) we can create a prefix-free code for X^{2}. The average length of this code is $2 \bar{L}_{\text {min }}$ bits per X^{2} symbol or $\bar{L}_{\text {min }}$ bits per symbol. As this average length must be either equal to or longer than the average length of the optimal code we have $\bar{L}_{\min } \geq \bar{L}_{\text {min }, 2}$.

4 (a) It is uniquely decodable because at each step if the decoder reads 0 then it will read the next 3 bits and convert them to integer and decode correctly. If it reads 1 then it will decode 8 a's and move to the next code.
(b)

$$
\begin{aligned}
E[\text { number of bits per B] } & =\sum_{i=0}^{\infty}(i+4) P\{8 \mathrm{i}+\mathrm{k} \text { consecutive a's for some } 0 \leq k \leq 7\} \\
& =\sum_{i=0}^{\infty}(i+4)\left(0.9^{8 i}+\ldots+0.9^{8 i+7}\right) 0.1 \\
& =\sum_{i=0}^{\infty}(i+4) 0.9^{8 i}\left(1-0.9^{8}\right) \\
& =\left(1-0.9^{8}\right)\left(\frac{4}{1-0.9^{8}}+\sum_{i=0}^{\infty} i(0.9)^{8 i}\right) \\
& =4+\left(1-0.9^{8}\right) \frac{0.9^{8}}{1-0.9^{8}} \frac{1}{1-0.9^{8}} \approx 4.75
\end{aligned}
$$

(c) Define the random variable Y_{i} to be equal to 1 if we have b at position i, otherwise zero. We are interested in

$$
\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

By WLLN for any $\epsilon>0$ we have,

$$
P\left\{\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}-E[Y]\right| \geq \epsilon\right\} \rightarrow 0, \quad \text { as } \mathrm{n} \text { increases }
$$

Since $E[Y]=0.1$ it gives the desired result.
(d) $0.1 \times 4.75=0.475$.

5 (a) Initially encode the window with 1024 bits then

Window Pointer	Encoded String (u, n)	$\log \mathrm{w}$	$2\lfloor\log n\rfloor+1$	total bits
1024	$(1,3976)$	10	23	33
5000	$(1,1)$	0	2	2
5001	$(1,3999)$	10	23	33
9000	$(1,1)$	0	2	2
9001	$(1,999)$	10	19	29

(b) number of bits $=1024+33+2+33+2+29=1123$
(c) Initially encode the window with 1024 bits then

Window Pointer	Encoded String (u,n)	$\log \mathrm{w}$	$2\lfloor\log n\rfloor+1$	total bits
8	$(1,4992)$	3	25	28
5000	$(1,1)$	0	2	2
5001	$(1,3999)$	3	23	26
9000	$(1,1)$	0	2	2
9001	$(1,999)$	3	19	22

Number of bits $=88$.
(d) Create the markov chain such that:

$$
\begin{aligned}
& P\left(X_{i+1}=1 \mid X_{i}=0\right)=\frac{P\left(X_{i+1}=1, X_{i}=0\right)}{P\left(X_{i}=0\right)} \\
& P\left(X_{i+1}=0 \mid X_{i}=1\right)=\frac{P\left(X_{i+1}=0, X_{i}=1\right)}{P\left(X_{i}=1\right)}
\end{aligned}
$$

Now the empirical average is a good estimate for these values:

$$
\begin{array}{r}
P\left(X_{i}=0\right) \approx \frac{\text { number of zeros }}{10^{4}}=0.6 \\
P\left(X_{i}=1\right) \approx \frac{\text { number of ones }}{10^{4}}=0.4 \\
P\left(X_{i+1}=0, X_{i}=1\right) \approx \frac{\text { number of }(1-0)^{\prime} \mathrm{s}}{10^{4}}=10^{-} 4 \\
P\left(X_{i+1}=1, X_{i}=0\right)
\end{array}
$$

Therefore

$$
\begin{aligned}
& P\left(X_{i+1}=1 \mid X_{i}=0\right) \approx \frac{1}{6000} \\
& P\left(X_{i+1}=0 \mid X_{i}=1\right) \approx \frac{1}{4000}
\end{aligned}
$$

(e) Assuming that the Markov chain is in stationary distribution,
$\lim _{n \rightarrow \infty} \frac{H\left(X_{1}, \ldots, X_{n}\right)}{n}=\lim _{n \rightarrow \infty} \frac{H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{2}\right)+\ldots+H\left(X_{n} \mid X_{n-1}\right)}{n}=H\left(X_{2} \mid X_{1}\right)$
Now

$$
H\left(X_{2} \mid X_{1}\right)=\frac{3}{5} H\left(10^{-4}\right)+\frac{2}{5} H\left(10^{-4}\right)=H\left(10^{-4}\right)
$$

