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1 (a) To show that li ≤ lj for all i < j, assume the contrary, that there exists an optimum
prefix-free code with pi > pj and li > lj for some i and j. Then if we interchange these
codewords we have a new code with average length

L
′
= L− (pili + pjlj) + (pilj + pjli)

= −pi(li − lj)− pj(lj − li)

= (pi − pj)(lj − li)

< L,

which contradicts the optimality of the code.
Using this result, we see that lk is minimized when all preceding constraints of the form

li ≤ lj for i < j are met with equality, i.e. when we have l1 = l2 = · · · = lk. In this case
we have a tree where all the leaves are at the same depth, i.e. lk = log2 k. Thus in general
lk ≥ log2 k ≥ blog2 kc.

(b) The unary-binary code uses lj = 2blog jc+ 1 bits to encode the length j of the match,
therefore

lim
j→∞

lj
log j

= 2.

2 (a)
∫ ∞

∞
fU(u)du = 2

∫ 1

0

c(1− u)du

= c

⇒ c = 1.

(b) For a uniform quantizer we need dlog Me bits.

(c) The minimum achievable average number of bits per source symbol required, is the
entropy. Let the r.v. X denote the quantizer output.

H(X) = −
∑

k

Pr(X = k) log2 Pr(X = k)
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We need to find the pmf of X. There are two cases, M even and M odd. We provide the
solution for M even. For k ∈ {−M/2, . . . , . . . ,M/2}\{0}

Pr(X = k) = Pr(2(|k| − 1)/M < U < 2|k|/M)

=

∫ 2|k|/M

2(|k|−1)/M

fU(u)du

=

∫ 2|k|/M

2(|k|−1)/M

1− udu

=
2

M

(
1 +

1− 2|k|
M

)
.

Thus

H(X) = −
∑

k∈{−M/2,...,...,M/2}\{0}

2

M

(
1 +

1− 2|k|
M

)
log2

2

M

(
1 +

1− 2|k|
M

)

= −
M/2∑

k=1

4

M

(
1 +

1− 2k

M

)
log2

2

M

(
1 +

1− 2k

M

)

(d) When M is large we can approximate this sum by an integral

H(X) → −
∫ M/2

1

4

M

(
1 +

1− 2x

M

)
log2

2

M

(
1 +

1− 2x

M

)
dx

=
1

M2

(
(M − 1)2 log2

(
M − 1

M2

)
+

M(1−M/2)

ln 2
+ 2M(M − 2)− log2

1

M2

)
− 1

→ log2

1

M
+ 1− 1

2 ln 2

as M →∞. Thus gap is bounded and converges to 1− 1/2 ln 2 ≈ 0.28 bits.

3 (a) The number of transmissions is a geometric random variable, i.e. P (N = n) =
pn−1(1− p)

(b) The mean of a geometric r.v. is EN = 1/(1 − p), therefore the system is stable for
arrival rates less than λ < 1/EN = 1− p packets per time slot.

(c) No. The best rate of an FEC on the erasure channel is 1− p.

(d) Answer to part (b) is unchanged as the steady state behavior remains the same.

4 (a) Pr(unable to decode) = pn.
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(b) Detection rule is to decode the symbol that appears the most times, picking randomly
if there is a tie. Suppose a 0 is sent. A 1 will be decoded if there are more than dn/2e bit
flips. Thus

Pr(error) =
n∑

k=dn/2e

(
n

k

)
pk(1− p)n−k.

(c) When n is large we can use the Gaussian approximation to the Binomial distribution.
The mean and variance of the relevant Gaussian are np and np(1− p), respectively. Let N
denote the number of bit flips. The pdf of the Gaussian is

pN(x) =
1√

2πnp(1− p)
e−(x−np)2/2np(1−p).

Thus

Pr(error) = Pr(N > n/2)

→
∫ ∞

n/2

1√
2πnp(1− p)

e−(x−np)2/2np(1−p)dx.

We can’t evaluate this integral explicitly, but we can bound it tail behavior.

Pr(error) ≈ e−(n/2−np)2/2np(1−p)

More precisely the tail behavior can be captured by the following statement concerning the
exponent.

lim
n→∞

− log Pr(error)

n
=

(1/2− p)2

2p(1− p)
.

The right hand side of the above equation tells us how fast the probability of error decays
with n. We can compare this decay rate to the erasure channel decay rate, which is

lim
n→∞

− log Pr(unable to decode)

n
= lim

n→∞
− log pn

n

= lim
n→∞

− log elog pn

n

= lim
n→∞

−n log p

n
.

= log p

In simple language, this means that when n is large, the error probability for the erasure
channel looks like ≈ e−n log p whereas the error probability for the binary symmetric channel

looks like ≈ e−n
(1/2−p)2

2p(1−p) . If we plot the two functions log p and (1/2−p)2

2p(1−p)
we see that log p is

much larger for all values of p in the desired range [0, 1/2]. Thus the probability of error
decays much faster when communicating over the erasure channel, for the same value of p.
This is one sense in which the erasure channel is “easier” to communicate over, though it
is a minor one. The dominant reason is that we can use simple feedback schemes on the
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erasure channel (such as in problem 3), because the receiver knows which bits are lost.

5 (a) An encoding matrix for the (7, 4) Hamming code is

G =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
1 1 0 1
1 0 1 1




We can decode if and only if after removing the rows of G corresponding to the erasures,
the remaining matrix G is full rank over the field of integers mod 2, GF(2). If there are
fewer than 3 erasures G is always full rank over GF(2). If there are more than 3 erasures
it is never full rank. G is full rank for certain 3-erasure combinations, but not all. By
enumeration there are 7, 3-erasure combinations that result in G having reduced rank.
Thus

Pr(error) =

(
7

0

)
p7 +

(
7

1

)
p6(1− p) +

(
7

2

)
p5(1− p)2 +

(
7

3

)
p4(1− p)3 + 7p3(1− p)4

= p7 + 7p6(1− p) + 21p5(1− p)2 + 35p4(1− p)3 + 7p3(1− p)4.

This probability does not depend on the transmitted codeword, only on the rank of G.
This is an artifact of the linearity of the code. When p is small

Pr(error) ≈ 7p3.

This is the probability that one of the 7, 3-erasure combinations that results in G having
reduced rank, occurs.
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