EE 121 - Introduction to Digital Communications Homework 6 Solutions

March 15, 2008

1. (a) If you have access to the latest version of MATLAB you can use a build in function quncinv.m to evaluate the inverse Q-function. Else you can simply use the norminv.m function, via the command '-norminv(10.^ (-1:-1:-10))'. This yields values
$\begin{array}{llllllllll}1.2816 & 2.3263 & 3.0902 & 3.7190 & 4.2649 & 4.7534 & 5.1993 & 5.6120 & 5.9978 & 6.3613\end{array}$
(b)

$$
\begin{aligned}
P(n>a) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{a}^{\infty} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{\frac{a-\mu}{\sigma}}^{\infty} e^{-x^{2} / 2} d x \\
& =Q\left(\frac{a-\mu}{\sigma}\right)
\end{aligned}
$$

2. (a) The detection rule that minimizes the error probability of error is the MAP detection rule,

$$
\begin{aligned}
& \operatorname{Pr}(x=+\sqrt{E} \mid y) \stackrel{+\sqrt{E}}{\gtrless} \\
& x=-\sqrt{E} \\
& \operatorname{Pr}(x=-\sqrt{E} \mid y) .
\end{aligned}
$$

Using Bayes rule we can write this as

$$
\begin{aligned}
\frac{\operatorname{Pr}(y \mid x=+\sqrt{E}) p_{1}}{\operatorname{Pr}(y)} & \left.\begin{array}{c}
x \\
= \\
x
\end{array}\right)=-\sqrt{E} \\
\gtrless & \frac{\operatorname{Pr}(y \mid x=-\sqrt{E}) p_{0}}{\operatorname{Pr}(y)} \\
\Rightarrow \frac{\operatorname{Pr}(y \mid x=+\sqrt{E})}{\operatorname{Pr}(y \mid x=-\sqrt{E})} & \left.\begin{array}{l}
x \\
x
\end{array}\right)=-\sqrt{E} \\
x & \frac{p_{0}}{p_{1}}
\end{aligned}
$$

where $p_{0} \triangleq \operatorname{Pr}(x=-\sqrt{E})$ and $p_{1} \triangleq \operatorname{Pr}(x=-\sqrt{E})$. Substituting for the distribution of the noise we have

$$
\begin{aligned}
x & =+\sqrt{E} \\
e^{-(y-\sqrt{E})^{2} / 2 \sigma^{2}+(y+\sqrt{E})^{2} / 2 \sigma^{2}} & \gtrless \\
x & =-\sqrt{E} \\
x & =+\sqrt{E} \\
\Rightarrow-(y-\sqrt{E})^{2} / 2 \sigma^{2}+(y+\sqrt{E})^{2} / 2 \sigma^{2} & \\
x & \gtrless-\sqrt{E} \\
& \log \frac{p_{0}}{p_{1}} \\
x & =+\sqrt{E} \\
\Rightarrow y & \gtrless \\
x & =-\sqrt{E}
\end{aligned} \frac{\sigma^{2}}{2 \sqrt{E}} \log \frac{p_{0}}{p_{1}} .
$$

The probability of error is then

$$
\begin{aligned}
\operatorname{Pr}(\text { error }) & =\operatorname{Pr}\left(\left.y>\frac{\sigma^{2}}{2 \sqrt{E}} \log \frac{p_{0}}{p_{1}} \right\rvert\, x=-\sqrt{E}\right) p_{0}+\operatorname{Pr}\left(\left.y<\frac{\sigma^{2}}{2 \sqrt{E}} \log \frac{p_{0}}{p_{1}} \right\rvert\, x=+\sqrt{E}\right) p_{1} \\
& =\operatorname{Pr}\left(w>\frac{\sigma^{2}}{2 \sqrt{E}} \log \frac{p_{0}}{p_{1}}+\sqrt{E}\right) p_{0}+\operatorname{Pr}\left(w<\frac{\sigma^{2}}{2 \sqrt{E}} \log \frac{p_{0}}{p_{1}}-\sqrt{E}\right) p_{1} \\
& =p_{0} \cdot Q\left(\frac{\sqrt{E}}{\sigma}+\frac{\sigma}{2 \sqrt{E}} \log \frac{p_{0}}{p_{1}}\right)+p_{1} \cdot Q\left(\frac{\sqrt{E}}{\sigma}-\frac{\sigma}{2 \sqrt{E}} \log \frac{p_{0}}{p_{1}}\right) .
\end{aligned}
$$

3. (a) Since both outputs are equiprobable, the MAP rule is the same as the ML rule. The likelihood ratio is:

$$
L R(y)=\frac{f\left(y \mid b=A_{1}\right)}{f\left(y \mid b=A_{2}\right)}
$$

and the ML rule is

$$
\hat{b}= \begin{cases}A_{1}, & \text { if } L R(y)>1 \\ A_{2}, & \text { if } L R(y) \leq 1\end{cases}
$$

Now note that

$$
\begin{aligned}
& f\left(y \mid b=A_{1}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\left(y-A_{1}-A_{3}\right)^{2} / 2 \sigma^{2}} \\
& f\left(y \mid b=A_{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\left(y-A_{2}-A_{3}\right)^{2} / 2 \sigma^{2}}
\end{aligned}
$$

Therefore

$$
L R(y)=e^{\left(A_{1}-A_{2}\right)\left(y-\left(A_{1}+A_{2}\right) / 2-A_{3}\right) / \sigma^{2}} .
$$

Without loss of generality we can assume $A_{1}>A_{2}$ in which case the ML rule is

$$
\hat{b}= \begin{cases}A_{1}, & \text { if } y>\left(A_{1}+A_{2}\right) / 2+A_{3} \\ A_{2}, & \text { if } y \leq\left(A_{1}+A_{2}\right) / 2+A_{3}\end{cases}
$$

(b)

$$
\begin{aligned}
\operatorname{Pr}(\text { error })= & \operatorname{Pr}\left(\hat{b}=A_{2} \mid b=A_{1}\right) \operatorname{Pr}\left(b=A_{1}\right)+\operatorname{Pr}\left(\hat{b}=A_{1} \mid b=A_{2}\right) \operatorname{Pr}\left(b=A_{2}\right) \\
= & \operatorname{Pr}\left(y<\left(A_{1}+A_{2}\right) / 2+A_{3} \mid b=A_{1}\right) \operatorname{Pr}\left(b=A_{1}\right) \\
& \quad+\operatorname{Pr}\left(y>\left(A_{1}+A_{2}\right) / 2+A_{3} \mid b=A_{2}\right) \operatorname{Pr}\left(b=A_{2}\right) \\
= & \frac{1}{2}\left(1-Q\left(\left(A_{2}-A_{1}\right) / 2 \sigma\right)\right)+\frac{1}{2} Q\left(\left(A_{1}-A_{2}\right) / 2 \sigma\right) \\
= & Q\left(\left(A_{1}-A_{2}\right) / 2 \sigma\right)
\end{aligned}
$$

(c) If the voltage is held constant for 1 second

$$
\mathbb{E}[\mathrm{E}]=A_{1}^{2} \operatorname{Pr}\left(b=A_{1}\right)+A_{2}^{2} \operatorname{Pr}\left(b=A_{2}\right)=\frac{A_{1}^{2}+A_{2}^{2}}{2}
$$

(d) The problem is

$$
\begin{aligned}
\min _{\left(A_{1}^{2}+A_{2}^{2}\right) / 2 \leq E} Q\left(\frac{A_{1}-A_{2}}{2 \sigma}\right) & \\
& =\max _{\left(A_{1}^{2}+A_{2}^{2}\right) / 2 \leq E} A_{1}-A_{2} \\
& =\max _{\left(A_{1}^{2}+A_{2}^{2}\right) / 2 \leq E}\left(A_{1}-A_{2}\right)^{2}
\end{aligned}
$$

Now note that

$$
\left(A_{1}-A_{2}\right)^{2} \leq\left(\left|A_{1}\right|+\left|A_{2}\right|\right)^{2} \leq 4 E
$$

and we have equality if and only if $A_{1}=-A_{2}$. Therefore the optimal choice is $A_{1}=\sqrt{E}$ and $A_{2}=-\sqrt{E}$.
4. The overall reliability is

$$
\begin{aligned}
10^{-5} & =\operatorname{Pr}(\text { at least one time slot has error }) \\
& =1-\left(1-P_{e}\right)^{n}
\end{aligned}
$$

where

$$
P_{e}=\left(2-\frac{1}{2^{R-1}}\right) Q\left(\frac{\sqrt{\mathrm{SNR}}}{2^{R}-1}\right)
$$

$n=8192 / R$ and $\operatorname{SNR}=E / \sigma^{2}$.

$$
\Rightarrow 10 \log _{10} \mathrm{SNR}=20 \log _{10}\left(\left(2^{R}-1\right) Q^{-1}\left(\frac{1}{2-\frac{1}{2^{R-1}}}\left(1-\left(1-10^{-5}\right)^{\frac{R}{8192}}\right)\right)\right)
$$

