
EE 121 - Introduction to Digital Communications
Homework 7 Solutions

April 27, 2008

1. (a) The total number of bits reliably communicated in T time slots is RT . The total
energy expended is ET . The energy per bit is then ET/RT = E/R joules per bit. As the
linear code from class was able to communicate reliably at a strictly positive rate R > 0,
the energy per bit E/R < ∞, i.e. we are able to communicate each bit reliably using a
bounded amount of energy.

(b) We can communicate reliably with the code from class, at rates R < R∗, where

R∗ = log2

(
2

1 + e−E/2σ2

)
.

Thus the energy per bit of the code is no more than

E

log2

(
2

1+e−E/2σ2

) .

(c) The ratio of the energy per bit to the noise variance is

E

σ2 log2

(
2

1+e−E/2σ2

) =
SNR

log2

(
2

1+e−SNR/2

) .

This expression is minimizes for SNR = 0.

(d)
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2. (a) Denote the ith column of G′ by gi. As G′ has 2 columns, it is full rank if its rank
is 2. Let r(G′) denote the rank of G′.

Pr(r(G′) = 2) = Pr(r([g1,g2]) = 2)

= Pr(r([g1,g2] = 2|r(g1) = 1) Pr(r(g1) = 1)

+ Pr(r([g1,g2] = 2|r(g1) = 0) Pr(r(g1) = 0)

= Pr(g2 6= g1,g2 6= 0|r(g1) = 1) Pr(g1 6= 0) + 0

As the entries of G′ are i.i.d. Bernoulli(1/2) random variables, the probability that g1 is
equal to the all zeros vector is 2−3. As there are two ways of g2 being a linear combination
of g1, given that g1 is full rank (i.e. g1 6= 0), namely, g2 = g1 and g2 = 0, the probability
of [g1,g2] being full rank given g1 is full rank, is 2/2−3. Thus

Pr(r(G′) = 2) = (1− 2× 2−3)(1− 2−3)

= 21/32

(b) G′ has (1 − ε)T rows and RT columns. In order for it to be full rank we must have
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R ≤ 1− ε, in which case G′ is full rank if its rank is RT .

Pr(r(G′) = RT )

= Pr(r([g1, . . . ,gRT ]) = RT )

= Pr(r( [g1, . . . ,gRT ]) = RT | r([g1, . . . ,gRT−1]) = RT − 1) Pr(r([g1, . . . ,gRT−1]) = RT − 1)

+ Pr(r([g1, . . . ,gRT ]) = RT | r([g1, . . . ,gRT−1]) < RT − 1) Pr(r([g1, . . . ,gRT−1]) < RT − 1)

= Pr(gRT 6= [g1, . . . ,gRT−1]a for some a ∈ {0, 1}RT−1|r([g1, . . . ,gRT−1]) = RT − 1)

× Pr(r([g1, . . . ,gRT−1]) = RT − 1) + 0

= (1− 2RT−1/2(1−ε)T ) Pr(r([g1, . . . ,gRT−1]) = RT − 1)

= (1− 2(R−1+ε)T−1) Pr(r([g1, . . . ,gRT−1]) = RT − 1)

Solving this recursion we get

Pr(r(G′) = RT ) =
RT−1∏
j=0

(1− 2j−(1−ε)T )

(c)

Pr(r(G′) < RT ) = 1− exp

(
loge

RT−1∏
j=0

(1− 2j−(1−ε)T )

)

= 1− exp

(
RT−1∑
j=0

loge(1− 2j−(1−ε)T )

)

≤ −
RT−1∑
j=0

loge(1− 2j−(1−ε)T )

≤
RT−1∑
j=0

2× 2j−(1−ε)T

= 21−(1−ε)T

RT−1∑
j=0

2j

= 21−(1−ε)T (2RT − 1)

≤ 21+T (R−(1−ε))

where we have used the inequalities from the hint in steps 3 and 4. This expression goes
to zero as T →∞ if R < 1− ε.

(d) The probability of more than εT erasures occurring is

T∑

k=εT+1

(
T

k

)
pk(1− p)T−k
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If p < ε, this probability goes to zero as T →∞ by the law of large numbers.

(e) In part (c) we showed that the probability of decoding error goes to zero as T → ∞
so long as the rate is less than one minus the fraction of erasures that occur. In part (d)
we argued that the probability of more than a fraction p of erasures occurring goes to zero
as T → ∞. Thus if the rate is less than 1 − p, reliable communication over the erasure
channel is possible.

(f) From the law of large numbers we know that as T →∞, the fraction of erasures will be
very close to p, with high probability. Consequently G′ will have fewer rows than columns
with high probability, and will therefore not be full rank if R > 1 − p. Thus reliable
communication is not possible at rates greater than 1 − p. Putting this together with the
answer to part (e) we can conclude that the capacity of the erasure channel is C = 1− p.

3. (a) We first condition the probability of error on the codeword transmitted

Pr(E) =
2RT∑
i=1

Pr(E| u = ui) Pr(u = ui).

Conditioned on transmitting codeword ui, we make an error if the received vector lies closer
to a different codeword uj

Pr(E) =
2RT∑
i=1

Pr




2RT⋃

j=1,j 6=i

{ui → uj}
∣∣∣∣∣∣
u = ui


 Pr(u = ui).

Using the union bound we have

Pr(E) ≤
2RT∑
i=1

2RT∑

j=1,j 6=i

Pr (ui → uj|u = ui) Pr(u = ui).

(b) We first condition on number of codeword entries in which ui and uj differ, which we
denote d(ui,uj).

Pr (ui → uj|u = ui) =
T∑

l=0

Pr (ui → uj|u = ui, d(ui,uj) = l) Pr(d(ui,uj) = l).

If codewords ui and uj differ in l entries then they are separated by l dimensions. In each
dimension the minimum separation distance in that dimension is 2

√
E/(M − 1). Thus the

worst case distance between codewords differing in l entries is d = 2l
√

E/(M − 1). Then

Pr (ui → uj|u = ui, d(ui,uj) = l) ≤ Q

(
d

2σ

)

= Q

(√
lE

(M − 1)2σ2

)
.
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As the codewords are generated by a random generator matrix with equiprobable entries,
the distribution of the number of entries in which two length-T codewords differ is a bino-
mial random variable B(T, 1− 1/M). Thus

Pr(d(ui,uj) = l) =

(
T

l

)(
1

M

)T−l (
1− 1

M

)l

.

Putting this together we have

Pr (ui → uj|u = ui) ≤
T∑

l=0

(
T

l

)(
1

M

)T−l (
1− 1

M

)l

Q

(√
lE

(M − 1)2σ2

)
.

(c) We use the bound Q(x) ≤ 1
2
e−x2/2 < e−x2/2 to get

Pr (ui → uj|u = ui) <

T∑

l=0

(
T

l

)(
1

M

)T−l (
1− 1

M

)l

e
− lE

2(M−1)2σ2

=

(
1

M

)T T∑

l=0

(
T

l

)(
1− 1

M
1
M

)l

e
− lE

2(M−1)2σ2

=

(
1

M

)T T∑

l=0

(
T

l

) (
(M − 1)e

− E
2(M−1)2σ2

)l

=

(
1

M

)T (
1 + (M − 1)e

− SNR
2(M−1)2

)T

Substituting back we get

Pr(E) <

2RT∑
i=1

2RT∑

j=1,j 6=i

(
1

M

)T (
1 + (M − 1)e

− E
2(M−1)2σ2

)T

Pr(u = ui)

= 2RT

(
1

M

)T (
1 + (M − 1)e

− E
2(M−1)2σ2

)T

= 2
RT+T log2( 1

M )+T log2

 
1+(M−1)e

− E
2(M−1)2σ2

!
= 2T (R−R∗)

where SNR = E/σ2 and

R∗ = log2

(
M

1 + (M − 1)e
− SNR

2(M−1)2

)
.

Thus if R < R∗ the probability of making a decoding error goes to zero as T →∞.

(d) The answer to part (c) tells us that if we use a randomly generated code, then the error
probability, averaged over the randomness of the generator matrix, goes to zero as T →∞,
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if R < R∗. This means that there exists at least one “good” generator matrix that has this
property, i.e. that allows us to communicate reliably.

(e) The plot is shown below. R∗
M saturates at log2 M . Because we use an M -point constel-

lation every time slot, we cannot hope to achieve a greater rate than this.
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If the distance between constellation points is much less than the standard deviation of
the noise, many entries of the transmitted codeword will be flipped and a large amount of
redundancy will be required in order to ameliorate this effect. This will result in a low rate
of reliable communication. On the other hand, if the distance between constellation points
is much greater than the noise standard deviation, few if any of the codewords entries will
be flipped and we could easily improve the rate without significantly effecting the number
of flipped codeword entries, by increasing the constellation size. Thus in general we should
space the constellation points at a distance roughly equal to the standard deviation of
the noise. The conclusion is that in order to achieve higher rates, at low values of SNR
we should use smaller constellation sizes, and at high values of SNR we should use larger
constellation sizes.
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