EE 121 - Introduction to Digital Communications
Homework 8 Solutions

May 7, 2008

1. (a) The error probability is P. = Q(v/SNR).
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(b) SNRyin = 22¢ — 1. Thus to reliably communicate 1 bit per channel use, we need
SNR > 3 =~ 5 dB. At an error probability of 107* 2-PAM requires roughly 12dB, an
additional ~7 dB beyond the minimum. At an error probability of 107 it requires ~13
dB, an additional ~8 dB beyond the minimum. As the target error probability decreases,
the gap to the minimum SNR increases without bound (albeit very slowly). This is consis-
tent with what was learnt in class, that coding is required to achieve arbitrarily low error
probabilities with finite SNR.

(c) For M-PAM, P. =2(1 — 1/M)Q(v/SNR/(M — 1)), see above figure.



(d) For M-PPM, define SNR = &,/c?, then P, < (M —1)Q (\/log%MSNR). As M — oo,

the gap decreases.
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2. (a) With 1Mhz of bandwidth and ideal sinc pulses we have 2Msamples/s. To achieve
R = 4Mbits/s we need to send 2 bits per sample. This requires either 4-PAM with no
repetition coding, 8-PAM with x1.5 repetition, or 16-PAM with x2 repetition. PPM can
only achieve rates of less than 1 bit per sample so we rule this scheme out. From the graph
plotted in Q1, we see that using 4-PAM to achieve an error probability of 10~* requires
an SNR of around 22 dB. For this scheme E,/Ny ~ 22 + 10log,,(1/2) = 19 dB. As using
M-PAM with repetition does not improve the error probability for the same amount of
total energy expended, 8-PAM with 1.5x repetition and 16-PAM with 2x repetition will
use the same energy per bit to achieve a 10~ error probability. Thus either 4-PAM with no
repetition, 8-PAM with 1.5x repetition, or 16-PAM with 2x repetition are all best choices in
terms of minimizing energy use whilst meeting the required error probability and data rate.

(b) To achieve R = 150 kbits/sec we need to send 0.075 bits per sample (or 1 bit every
13.33 samples). This can be achieved using 2-PAM and x13 repetition. The required SNR
to achieve the target error probability is 12 dB - 10log;,(13) ~ 1 dB. The corresponding
Ey/No ~ 12 + 101log;((13) + 10log,(1) = 12 dB. If we use M-PAM with M > 2, E,/Ny
remains unchanged. If we use M-PPM we need log, M /M > 0.075. From the plot in Q1 we
see that at an error probability of 10~* the larger the value of M the smaller the required
SNR. Thus we choose M = 64, the maximum value in the proscribed range, in which case
we can compute the required E,/Ny to be around 8 dB. So this is the best option.
Another possibility is to use only a fraction of the allocated bandwidth. Say we use a



bandwidth of 0.075W, then the noise variance is reduced by a factor of 1/0.075 and the
SNR is boosted by 10log10(1/0.075) ~ 11 dB. With 2-PAM we would now be able to
communicate at R = 150 kbits/sec using an SNR of ~ 12 — 11 =1 dB and an E,/Ny =~ 1
dB. This is less energy per bit than 64-PPM, so it is a more desirable option if we are not
restricted to using the full bandwidth allocated.

3. (a) A system diagram is shown below, where

g(t) = sinc(t/T).
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(b) As the set of functions {sinc(t/T — m)}mez forms an orthonormal basis for the space
L?, which has the inner product defined by
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we can write the filtered noise in terms of this basis as

W(t) = Y amsine(t/T —m),

m=—0oQ

for some coefficients «,,. Solving for a,, we find «,, = w[m], which yields
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Now if for any € > 0, |m| > (1 + €)7/2T or |n| > (1 + €)7/2T, then
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As this result for holds for any € > 0 we let ¢ — 0 to get
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(c) We can essentially use the same proof, we just need to show that if for any ¢ > 0,
Im| > (1+¢€)7/2T or |n| > (14 €)7/2T, then
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as 7 — 00. As the functions g(t/7 — m) are orthonormal, they have finite energy, i.e.
/ g*(t)dt < oo.

This guarantees the property (1) holds.

4. (a) D is also measured in seconds. The variable ¢ represents the number of seconds
after the signal enters the channel. The parameter D dictates the amount of memory in
the channel.

(b) The impulse response is non-zero for all ¢ > 0, an infinite duration. However, we can
define the e-delay spread as the smallest value of ¢ such that a fraction 1 — € of the total
energy is contained in the impulse response up to time ¢, i.e.

e-delay spread = min t
s.t. fot |h(7)[2dT>(1—¢€) [ |h(T)|2dT

For the channel in question, the e-delay spread is
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which is proportional to D, as expected.

c¢) The discrete time channel response is
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with 7' = 107° seconds, we have the following plot
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The discrete time channel is effectively memoryless for D = 1077 and D = 1078, This
is consistent with what was taught in class, as for these values of D, most of the symbol
energy arrives in the first tap.



