
EE 121 - Introduction to Digital Communications
Homework 8 Solutions

May 7, 2008

1. (a) The error probability is Pe = Q(
√

SNR).
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(b) SNRmin = 22C − 1. Thus to reliably communicate 1 bit per channel use, we need
SNR > 3 =≈ 5 dB. At an error probability of 10−4 2-PAM requires roughly 12dB, an
additional ≈7 dB beyond the minimum. At an error probability of 10−5 it requires ≈13
dB, an additional ≈8 dB beyond the minimum. As the target error probability decreases,
the gap to the minimum SNR increases without bound (albeit very slowly). This is consis-
tent with what was learnt in class, that coding is required to achieve arbitrarily low error
probabilities with finite SNR.

(c) For M -PAM, Pe = 2(1− 1/M)Q(
√

SNR/(M − 1)), see above figure.
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(d) For M -PPM, define SNR = Eb/σ
2, then Pe < (M − 1)Q

(√
log2 M

2
SNR

)
. As M →∞,

the gap decreases.
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2. (a) With 1Mhz of bandwidth and ideal sinc pulses we have 2Msamples/s. To achieve
R = 4Mbits/s we need to send 2 bits per sample. This requires either 4-PAM with no
repetition coding, 8-PAM with x1.5 repetition, or 16-PAM with x2 repetition. PPM can
only achieve rates of less than 1 bit per sample so we rule this scheme out. From the graph
plotted in Q1, we see that using 4-PAM to achieve an error probability of 10−4 requires
an SNR of around 22 dB. For this scheme Eb/N0 ≈ 22 + 10 log10(1/2) = 19 dB. As using
M -PAM with repetition does not improve the error probability for the same amount of
total energy expended, 8-PAM with 1.5x repetition and 16-PAM with 2x repetition will
use the same energy per bit to achieve a 10−4 error probability. Thus either 4-PAM with no
repetition, 8-PAM with 1.5x repetition, or 16-PAM with 2x repetition are all best choices in
terms of minimizing energy use whilst meeting the required error probability and data rate.

(b) To achieve R = 150 kbits/sec we need to send 0.075 bits per sample (or 1 bit every
13.33 samples). This can be achieved using 2-PAM and x13 repetition. The required SNR
to achieve the target error probability is ≈12 dB - 10 log10(13) ≈ 1 dB. The corresponding
Eb/N0 ≈ 12 + 10 log10(13) + 10 log10(1) = 12 dB. If we use M -PAM with M > 2, Eb/N0

remains unchanged. If we use M -PPM we need log2 M/M ≥ 0.075. From the plot in Q1 we
see that at an error probability of 10−4 the larger the value of M the smaller the required
SNR. Thus we choose M = 64, the maximum value in the proscribed range, in which case
we can compute the required Eb/N0 to be around 8 dB. So this is the best option.

Another possibility is to use only a fraction of the allocated bandwidth. Say we use a
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bandwidth of 0.075W , then the noise variance is reduced by a factor of 1/0.075 and the
SNR is boosted by 10 log 10(1/0.075) ≈ 11 dB. With 2-PAM we would now be able to
communicate at R = 150 kbits/sec using an SNR of ≈ 12− 11 = 1 dB and an Eb/N0 ≈ 1
dB. This is less energy per bit than 64-PPM, so it is a more desirable option if we are not
restricted to using the full bandwidth allocated.

3. (a) A system diagram is shown below, where

g(t) , sinc(t/T ).

We have

y(t) =
∑
m>0

x(m) · g(t−mT ) ∗ h(t) + w(t)

ỹ(t) =
∑
m>0

x(m) · g(t−mT ) ∗ g∗(−t) ∗ h(t) + w̃(t)

y[n] = ỹ(nT ) =
∑
m>0

x(m) · g(t−mT ) ∗ g∗(−t) ∗ h(t)
∣∣∣
t=nT

+ w[n]

(t)
g(t) h(t) g(-t)

w(t)

x[m] y[m]
y(t)x(t)

m>0 (t-mT)

(b) As the set of functions {sinc(t/T −m)}m∈Z forms an orthonormal basis for the space
L2, which has the inner product defined by

< f(t), g(t) >=

∫ ∞

−∞
f(t)g(t)dt,

we can write the filtered noise in terms of this basis as

w̃(t) =
+∞∑

m=−∞
αmsinc(t/T −m),

for some coefficients αm. Solving for αm we find αm = w[m], which yields

lim
τ→∞

1

τ

∫ τ/2

−τ/2

E[w̃(t)]2dt = lim
τ→∞

1

τ

∫ τ/2

−τ/2

E

[
+∞∑

m=−∞
w[m]sinc(t/T −m)

]2

dt

= lim
τ→∞

1

τ

∫ τ/2

−τ/2

E

[
+∞∑

m=−∞

+∞∑
n=−∞

w[m]w[n]sinc(t/T −m)sinc(t/T − n)

]
dt

= lim
τ→∞

1

τ

+∞∑
m=−∞

+∞∑
n=−∞

E [w[m]w[n]]

∫ τ/2

−τ/2

sinc(t/T −m)sinc(t/T − n)dt
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Now if for any ε > 0, |m| > (1 + ε)τ/2T or |n| > (1 + ε)τ/2T , then∣∣∣∣∣
∫ τ/2

−τ/2

sinc(t/T −m)sinc(t/T − n)dt

∣∣∣∣∣ ≤
∫ τ/2

−τ/2

|sinc(t/T −m)sinc(t/T − n)| dt

<
1

π

∫ τ/2

−τ/2

T

|t− (1 + ε)τ/2|dt

=
1

π

∫ τ/2

−τ/2

T

(1 + ε)τ/2− t
dt

=
T

π

[
1

((2 + ε)τ/2)2 −
1

(ετ/2)2

]

≤ T

π(1 + ε/2)2τ 2

→ 0

as τ →∞. Thus

lim
τ→∞

1

τ

∫ τ/2

−τ/2

E[w̃(t)]2dt

= lim
τ→∞

1

τ

+(1+ε)τ/2T∑

m=−(1+ε)τ/2T

+(1+ε)τ/2T∑

n=−(1+ε)τ/2T

E [w[m]w[n]]

∫ τ/2

−τ/2

sinc(t/T −m)sinc(t/T − n)dt

= lim
τ→∞

1

τ

+(1+ε)τ/2T∑

m=−(1+ε)τ/2T

+(1+ε)τ/2T∑

n=−(1+ε)τ/2T

E [w[m]w[n]] δnm

= lim
τ→∞

1

τ

+(1+ε)τ/2T∑

m=−(1+ε)τ/2T

E
[
w[m]2

]

= lim
τ→∞

1

τT

+(1+ε)τ/2∑

m=−(1+ε)τ/2

E
[
w[m]2

]

= lim
n→∞

1

nT

+(1+ε)n/2∑

m=−(1+ε)n/2

E
[
w[m]2

]

As this result for holds for any ε > 0 we let ε → 0 to get

lim
τ→∞

1

τ

∫ τ/2

−τ/2

E[w̃(t)]2dt = lim
n→∞

1

nT

+n/2∑

m=−n/2

E
[
w[m]2

]
.

(c) We can essentially use the same proof, we just need to show that if for any ε > 0,
|m| > (1 + ε)τ/2T or |n| > (1 + ε)τ/2T , then∣∣∣∣∣

∫ τ/2

−τ/2

g(t/T −m)g(t/T − n)dt

∣∣∣∣∣ → 0 (1)
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as τ →∞. As the functions g(t/T −m) are orthonormal, they have finite energy, i.e.∫ ∞

−∞
g2(t)dt < ∞.

This guarantees the property (1) holds.

4. (a) D is also measured in seconds. The variable t represents the number of seconds
after the signal enters the channel. The parameter D dictates the amount of memory in
the channel.

(b) The impulse response is non-zero for all t > 0, an infinite duration. However, we can
define the ε-delay spread as the smallest value of t such that a fraction 1 − ε of the total
energy is contained in the impulse response up to time t, i.e.

ε-delay spread = min
s.t.

∫ t
0 |h(τ)|2dτ>(1−ε)

∫∞
0 |h(τ)|2dτ

t

For the channel in question, the ε-delay spread is

D

2
log2

1

ε
which is proportional to D, as expected.

c) The discrete time channel response is

hk =

∫ ∞

0

1

D
e−t/Dsinc

(
k − t

T

)
dt

with T = 10−6 seconds, we have the following plot
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The discrete time channel is effectively memoryless for D = 10−7 and D = 10−8. This
is consistent with what was taught in class, as for these values of D, most of the symbol
energy arrives in the first tap.
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