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1. (a) If we do no transmit anything on symbol time 1 then
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in which case the matched filter receiver projects x[0] onto the vector [h0, h1]
T , i.e.

x̂[0] = h0y[0] + h1y[1]

A picture illustrating this operation is given below. We can write the estimate of x[0] in
terms of x[0] and the noise like so

x̂[0] = (h2
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1)x[0] + h0w[0] + h1w[1].

As w[0] and w[1] are i.i.d N (0, σ2) r.v.’s, h0w[0] + h1w[1] ∼ N (0, (h2
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where SNR ≡ E/σ2.
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(b) The matched filter estimate of x[0] can now be written as

x̂[0] = (h2
0 + h2

1)x[0] + h0h1x[1] + h0w[0] + h1w[1].

where the h1h0x[1] term is the interference. We compute the average error probability of
detecting x[0] by conditioning on the interference. Due to the symmetry we can assume
without loss of generality, that x[1] = +

√
E was transmitted. We have
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As the matched filter detector for x[0] treats the interference as noise, the error probability
is
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(c) At high-SNR
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More generally Pr(E) → 0 as SNR → ∞ for this example, which is desirable. This is
because we are using BPSK on a two tap ISI channel. With a sufficient number of taps or
a sufficient number of constellation points, this conclusion will not hold and we will instead
find that Pr(E) → constant > 0 as SNR →∞.

(d) The MLSD has an error performance which is at least as good as the zero-forcing
equalizer where x̂[0] = y[0]. This means

Pr(E) < Q

(√
h2

0SNR

)

which for any fixed h2
0 > 0, goes to zero as SNR goes to infinity.

2. The received sequence is y[0] = 1.1, y[1] = 2.9, y[2] = 0.5, y[3] = −3.6, y[4] = 2.6,
y[5] = −1.2, y[6] = −1.9 and y[7] = 2.3. The trellis diagram is shown below.
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At stage 1 there are four possible paths, (1, 1), (1,−1), (−1, 1), (−1,−1), with costs

C(1, 1) = (1.5× 1− 1.1)2 + (1.5× 1 + 0.6× 1− 2.9)2 = 0.80

C(1,−1) = (1.5× 1− 1.1)2 + (−1.5× 1 + 0.6× 1− 2.9)2 = 14.60

C(−1, 1) = (−1.5× 1− 1.1)2 + (1.5× 1− 0.6× 1− 2.9)2 = 10.76

C(−1,−1) = (1.5× 1− 1.1)2 + (1.5× 1 + 0.6× 1− 2.9)2 = 31.76

At stage 2 we pick the least costly two paths entering each vertex in the trellis at m = 2.

C(1, 1, 1) = C(1, 1) + (1.5× 1 + 0.6× 1− 0.5)2 = 0.80 + 2.56 = 3.36

C(1, 1,−1) = C(1, 1) + (−1.5× 1 + 0.6× 1− 0.5)2 = 0.80 + 1.96 = 2.76

C(1,−1, 1) = C(1,−1) + (1.5× 1− 0.6× 1− 0.5)2 = 14.60 + 0.16 = 14.76

C(1,−1,−1) = C(1,−1) + (−1.5× 1− 0.6× 1− 0.5)2 = 14.60 + 6.76 = 21.36

As all four paths have x̂[0] = 1 in common, we can decode this symbol immediately. At
stage three we have

C(1, 1, 1, 1) = 3.36 + (1.5 + 0.6 + 3.6)2 = 35.85

C(1, 1, 1,−1) = 3.36 + (−1.5 + 0.6 + 3.6)2 = 10.65

C(1, 1,−1, 1) = 2.76 + (1.5− 0.6 + 3.6)2 = 23.01

C(1, 1,−1,−1) = 2.76 + (−1.5− 0.6 + 3.6)2 = 5.01

As all four paths have the same second symbol, we can immediately decode x̂[1] = 1. At
stage four we have

C(1, 1,−1, 1, 1) = 23.01 + (1.5 + 0.6− 2.6)2 = 23.26

C(1, 1,−1, 1,−1) = 23.01 + (−1.5 + 0.6− 2.6)2 = 35.26

C(1, 1,−1,−1, 1) = 5.01 + (1.5− 0.6− 2.6)2 = 7.90

c(1, 1,−1,−1,−1) = 5.01 + (−1.5− 0.6− 2.6)2 = 27.10

Thus we can immediately decode x̂[2] = −1. At stage five we have

C(1, 1,−1,−1, 1, 1) = 7.90 + (1.5 + 0.6 + 1.2)2 = 18.79

C(1, 1,−1,−1, 1,−1) = 7.90 + (−1.5 + 0.6 + 1.2)2 = 7.99

C(1, 1,−1,−1,−1, 1) = 27.10 + (1.5− 0.6 + 1.2)2 = 31.51

C(1, 1,−1,−1,−1,−1) = 27.10 + (−1.5− 0.6 + 1.2)2 = 27.91

Thus x̂[3] = −1. At stage six we compute

C(1, 1,−1,−1, 1, 1, 1) = 18.79 + (1.5 + 0.6 + 1.9)2 = 34.79

C(1, 1,−1,−1, 1, 1,−1) = 18.79 + (−1.5 + 0.6 + 1.9)2 = 19.79

C(1, 1,−1,−1, 1,−1, 1) = 7.99 + (1.5− 0.6 + 1.9)2 = 15.83

C(1, 1,−1,−1, 1,−1,−1) = 7.99 + (−1.5− 0.6 + 1.9)2 = 8.03
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Thus x̂[4] = 1. At stage seven we compute

C(1, 1,−1,−1, 1,−1, 1, 1) = 15.83 + (1.5 + 0.6− 2.3)2 = 15.87

C(1, 1,−1,−1, 1,−1, 1,−1) = 15.83 + (−1.5 + 0.6− 2.3)2 = 26.07

C(1, 1,−1,−1, 1,−1,−1, 1) = 8.03 + (1.5− 0.6− 2.3)2 = 9.99

C(1, 1,−1,−1, 1,−1,−1,−1) = 8.03 + (−1.5− 0.6− 2.3)2 = 27.39

The most probable path, and hence the path the Viterbi algorithm outputs, is then x̂[0] = 1,
x̂[1] = 1, x̂[2] = −1, x̂[3] = −1, x̂[4] = 1, x̂[5] = −1, x̂[6] = −1, x̂[7] = 1. Comparing this
to the transmitted sequence we have an error for x[2], but all other symbols are decoded
correctly.

3. (a) 0, +
√

E,−√E, 0, 0, +
√

E, 0,−√E, 0.

(b) R = 1 bits/symbol. The average energy is E/2.

(c) We effectively transmit +
√

E and −√E each with probability 1/4, and 0 with proba-
bility 1/2. The symbol by symbol detection rule can therefore be found just by considering
|y[m]|, in which case we have two symbols

√
E and 0, each occurring with probability 1/2.

The ML detection rule is then

b̂[m] =

{
0, if |y[m]| < a
1, if |y[m]| ≥ a.

To find a we solve

p|y[m]|
∣∣b[m]

(a|0) = p|y[m]|
∣∣b[m]

(a|1)

⇒ pw[m](a)+ ⇒ pw[m](−a) = pw[m](a−
√

E) + pw[m](a +
√

E)

⇒ 2pw[m](a) = pw[m](a−
√

E) + pw[m](a +
√

E)

⇒ 2e−a2/2σ2

= e−(
√

E−a)2/2σ2

+ e−(
√

E+a)2/2σ2

.

a is then given by the solution to the last equation (it cannot be expressed explicitly). The
error probability is
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2
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(d) Symbol by symbol detection is not optimal because we are ignoring knowledge of
whether a b[m] = 1 will more likely correspond to a +

√
E than a −√E. To do MLSD

we use the state space S = {+1, +0,−0,−1} so that the state s[m] ∈ S for each time
m = 0, 1, . . . . State ’+1’ corresponds to transmitting a +

√
E, state ’-1’ corresponds to
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transmitting a −√E, state ’+0’ corresponds to transmitting a 0 when the previous non-
zero transmission was a +

√
E, and lastly, state ’-0’ corresponds to transmitting a 0 when

the previous non-zero transmission was a −√E. The state transition diagram is shown
below. All transitions occur with probability 1/2. We can draw a corresponding trellis
diagram and compute costs in the obvious way.

+1 +0

-0-1

4. Let y[r] = (x ∗ h)[r] =
∑N−1

m=0 h[m]x[r −m mod N ]. Then

Y [k] =
√

N

N−1∑
r=0

y[r]e−j2πrk/N

=
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=
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N−1−m∑
n=−m

x[n mod N ]e−j2π(n+m)k/N

=
√

N

N−1∑
m=0

h[m]e−j2πmk/N

N−1−m∑
n=−m

x[n mod N ]e−j2πnk/N

=
√

N

N−1∑
m=0

h[m]e−j2πmk/N

N−1∑
n=0

x[n]e−j2πnk/N

=
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N−1∑
m=0

h[m]e−j2πmk/NX[k]

=
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NH[k]X[k]

5. (a)
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where

d[0] =
d̃[0]√

2
+

d̃[1]√
2

d[1] =
d̃[0]√

2
− d̃[1]√

2

and

ỹ[0] =
√

2y[2] +
√

2y[3]

ỹ[1] =
√

2y[2]−
√

2y[3]

corresponding to IDFT and DFT operations, respectively.

(b) h̃0 = h0/
√

N + h1/
√

N = 3
2
√

2
and h̃0 = h0/

√
N − h1/

√
N = 3/2

√
2 = 1

2
√

2
.

(c) Not very efficient as the prefix is half the length of the data block, i.e. 66 percent
efficiency. We could improve efficiency by increasing the number of tones.

6. (a) The Doppler spread at v = 120 km/h at fc = 5 Ghz is 2fcv/c = 2 × 5 × 109 ×
33.33/3× 108 = 1.111KHz. With W = 5Mhz of bandwidth and N tones, the inter-carrier
spacing is ≈ W/N . Thus we must have 1111 ≤ 0.01 ×W/N ⇒ N ≤ 45 tones. So choose
N = 45 tones. The number of channels taps is then ≈ 10−5× 2W = 50. So we use a cyclic
prefix of length 49.

(b) The overhead is 49/(49 + 45) = 52.6 percent. The data rate is then 2 × 0.474 ≈ 0.95
bits/symbol or about 4.74 Mbits/sec.

(c) In an indoor wireless system the maximum velocity would likely decrease, leading to a
smaller doppler spread and the ability to pack more tones into the frequency band. The
delay spread would also decrease as a consequence of the shorter path lengths involved.
This leads to fewer taps. Both effects would lead to an improvement in efficiency, i.e. a
reduction of overhead.
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