EECS 122:
Introduction to Computer Networks
Course Goals and Overview

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720-1776

Instructors

- Instructor: Ion Stoica (istoica@cs.Berkeley.edu)
 - Office Hours: W 2-3 PM, 645 Soda Hall
- Textbooks
TAs

- Jana Van Gruenen (janavg@eecs.berkeley.edu)
 - Discussion section: Th 11-12 299 Cory
- Rowena Luk (rowenaluk@gmail.com)
 - Discussion section: Tu 2-3, 299 Cory
- Murali Rangan (murali@eecs.berkeley.edu)
 - Discussion section: F 10-11 299 Cory
- Artur Rivilis (artur_r@uclink.berkeley.edu)
 - Discussion section: W 1-2, 299 Cory

- Office hours: TBD

Overview

- Administrivia
- Overview and History of the Internet
Administrivia

- Course Web page:
 - http://inst.eecs.berkeley.edu/~ee122/
 - Check often to get the latest information

- Deadlines
 - HWs: due 3:50 pm on the indicated date (10 minutes before lecture)

- Exams are closed-book, with open crib sheet
- Come to office hours, request an appointment, communicate by e-mail
 - We are here to help, including general advice!
 - TAs first line for help with programming problems

- Give us suggestions/complaints as early as possible

Course Goals

- Learn the main architectural concepts and technological components of communication networks, with the Internet as the overarching example
 - Understand how the Internet works
 - And why the Internet is the way it is

- Apply what you learned in three mini-class projects
Class Workload

- Four homeworks spread over the semester
 - Strict deadlines and due dates (no slip days!)
- Three (mini-)projects
 - 1st and 3rd are part of a larger project, which involves implementing a comprehensive network application
 - C (or C++) required
 - 2nd is a simulation project
- One midterm exams
 - October 17
- Final exam
 - December 17
 - Note dates and plan your travel accordingly!

Grading

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeworks</td>
<td>20%</td>
</tr>
<tr>
<td>Projects</td>
<td>40%</td>
</tr>
<tr>
<td>Midterm exam</td>
<td>20%</td>
</tr>
<tr>
<td>Final exam</td>
<td>20%</td>
</tr>
</tbody>
</table>

- Consultation on HWs is OK, but must hand in own work
 - Correlation between understanding HWs and doing well on exams
- Course graded to mean of B
 - Relatively easy to get a B, harder to get an A or a C
 - 10% A, 15% A-, 15% B+, 20% B, 15% B-, 15% C+, 10% C
 - A+ reserved for superstars (only 1 or 2 per class)
 - Mean can shift up for an especially great class
Overview

- Administrivia
 - Overview and History of the Internet
 - See http://www.isoc.org/internet/history/ for more details

What do this two have in Common?

- First printing press
- Key idea: splitting up text in individual components
 - E.g., lower, upper case letters

The Internet

Both lower the cost of distributing information
What is a Communication Network? (End-system Centric View)

- Network offers one basic service: move information
 - Bird, fire, messenger, truck, telegraph, telephone, Internet …
 - Another example, transportation service: move objects
 - Horse, train, truck, airplane …
- What distinguish different types of networks?
 - The services they provide
- What distinguish the services?
 - Latency
 - Bandwidth
 - Loss rate
 - Number of end systems
 - Service interface (how to invoke the service?)
 - Others
 - Reliability, unicast vs. multicast, real-time…

What is a Communication Network? (Infrastructure Centric View)

- Communication components:
 - Links – carry bits from one place to another (or maybe multiple places): fiber, copper, satellite, …
 - Interfaces – attach devices to links
 - Switches/routers – interconnect links: electronic/optic, crossbar/Banyan
 - Hosts – communication endpoints: workstations, PDAs, cell phones, toasters
- Protocols – rules governing communication between nodes
 - TCP/IP, ATM, MPLS, SONET, Ethernet, X.25
- Applications: Web browser, X Windows, FTP, …
Network Components (Examples)

<table>
<thead>
<tr>
<th>Links</th>
<th>Interfaces</th>
<th>Switches/routers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibers</td>
<td>Ethernet card</td>
<td>Large router</td>
</tr>
<tr>
<td>Coaxial Cable</td>
<td>Wireless card</td>
<td>Telephone switch</td>
</tr>
</tbody>
</table>

Types of Networks

- **Geographical distance**
 - Local Area Networks (LAN): Ethernet, Token ring, FDDI
 - Metropolitan Area Networks (MAN): DQDB, SMDS
 - Wide Area Networks (WAN): X.25, ATM, frame relay
 - Caveat: LAN, MAN, WAN may mean different things
 - Service, network technology, networks
- **Information type**
 - Data networks vs. telecommunication networks
- **Application type**
 - Special purpose networks: airline reservation network, banking network, credit card network, telephony
 - General purpose network: Internet
Types of Networks

- Right to use
 - Private: enterprise networks
 - Public: telephony network, Internet
- Ownership of protocols
 - Proprietary: IBM System Network Architecture (SNA)
 - Open: Internet Protocol (IP)
- Technologies
 - Terrestrial vs. satellite
 - Wired vs. wireless
- Protocols
 - IP, AppleTalk, SNA

The Internet (cont’d)

- Global scale, general purpose, heterogeneous-technologies, public, computer network
- Internet Protocol
 - Open standard: Internet Engineering Task Force (IETF) as standard body (http://www.ietf.org)
 - Technical basis for other types of networks
 - Intranet: enterprise IP network
- Developed by the research community
Services Provided by the Internet

- Shared access to computing resources
 - telnet (1970's)
- Shared access to data/files
 - FTP, NFS, AFS (1980's)
- Communication medium over which people interact
 - email (1980's), on-line chat rooms, instant messaging (1990's)
 - audio, video (1990's, early 00's)
 - replacing telephone network?
- Medium for information dissemination
 - USENET (1980's)
 - WWW (1990's)
 - replacing newspaper, magazine?
 - Audio, video (late 90's, early 00's)
 - replacing radio, TV?
 - File sharing (late 90's, early 00's)

Growth of the Internet

Number of Hosts on the Internet:

- Aug. 1981: 213
- Oct. 1984: 1,024
- Dec. 1987: 28,174
- Oct. 1990: 313,000
- Oct. 1993: 2,056,000
- Apr. 1995: 5,706,000
- Jan. 1997: 16,146,000
- Jan. 1999: 56,218,000
- Jan. 2001: 109,374,000
- Jan. 2003: 171,638,297
- Jan. 2005: 317,646,084

Data available at: http://www.isc.org/

Estimated number of users: http://www.internetworldstats.com/stats.htm
Internet vs. Telephone Net

<table>
<thead>
<tr>
<th>Internet: “intelligent” edge, “dump” core</th>
<th>Telephone Net: “dump” edge, “intelligent” core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strengths</td>
<td></td>
</tr>
<tr>
<td>- Intelligence at ends</td>
<td>- No end-point intelligence</td>
</tr>
<tr>
<td>- Decentralized control</td>
<td>- Excellent voice performance</td>
</tr>
<tr>
<td>- Operates over heterogeneous access technologies</td>
<td>- Achieves performance by overprovisioning resources</td>
</tr>
<tr>
<td>Weaknesses</td>
<td>- Difficult to add new services to “Intelligent Network” due to complex call model</td>
</tr>
<tr>
<td>- No differential service</td>
<td>- Expensive approach for reliability</td>
</tr>
<tr>
<td>- Variable performance delay</td>
<td></td>
</tr>
<tr>
<td>- New functions difficult to add since end nodes must be upgraded</td>
<td></td>
</tr>
<tr>
<td>- No trusted infrastructure</td>
<td></td>
</tr>
</tbody>
</table>

History of the Internet

- 68-70’s: started as a research project, 56 kbps, initially 4 nodes (UCLA, UCSB, SRI, Utah) then < 100 computers
- 80-83: TCP/IP, DNS; ARPANET and MILNET split
- 85-86: NSF builds NSFNET as backbone, links 6 Supercomputer centers, 1.5 Mbps, 10,000 computers
- 87-90: link regional networks, NSI (NASA), ESNet (DOE), DARTnet, TBWNet (DARPA), 100,000 computers
- 90-92: NSFNET moves to 45 Mbps, 16 mid-level networks
- 94: NSF backbone dismantled, multiple private backbones; Introduction of Commercial Internet
- Today: backbones run at 10 Gbps, close to 200 millions computers in 150 countries
The ARPANet

- Paul Baran
 - RAND Corp, early 1960s
 - Communications networks that would survive a major enemy attack
- ARPANet: Research vehicle for “Resource Sharing Computer Networks”
 - 2 September 1969: UCLA first node on the ARPANet
 - December 1969: 4 nodes connected by phone lines

ARPANet Evolves into Internet

|---------|--------|-------|--------|--------|----------------------------------|-----|-----|------|------|------|------|------|------|

SATNet: Satellite network
PRNet: Radio Network

Web Hosting
Multiple ISPs
Internet2 Backbone
Internet Exchanges
Application Hosting
ASP: Application Service Provider
AIP: Application Infrastructure Provider (e-commerce toolkit, etc.)
Network “Cloud”

Regional Nets + Backbone

LAN: Local Area Network
Computers Inside the Core

The Evolution of the Enterprise
The Evolution of the Enterprise

1995

Dedicated facilities/computer centers

Private Corporate Network

Limited customer/external access

Internal users

Outsourced "Enterprise Resource Planning" Apps
e.g., PeopleSoft

1997

Outsourced Web Hosting

Internet

ISP Mesh

Virtual Private Network

Dedicated Facility Outsourced ERP Apps

External Customers

EE122, Fall '05 33

EE122, Fall '05 34
The Evolution of the Enterprise

1997

- Virtual Private Network
- Internet
- ISP Mesh
- Dedicated Facility
 Outsourced ERP Apps
- External Customers
- Internal users

1999

- Content Delivery "Net"
- 3rd Party
 Facilities Mgmt
- Internet Services
- Outsourced
 Web Hosting
- Applications
 Service Provider
- Caching + Media Servers
- Customers
- VPNs
Services Within the Network: Content Distribution

"ISP Mesh"
Parallel Network Backbones
Internet Exchange Points

Co-Location
Scalable Servers

Web Caches

P2P Services in the Internet: Napster, Gnutella, BitTorrent, ...

Directory Service
(can be distributed across peers)

Coldplay Speed of Sound
Britney Spears Cinderella

Register my copy
Find me a copy
Look here

Grid computing: sharing resources/enabling collaboration
Summary

- Course administrative trivia
- Internet history and background