Today’s Lecture: 6

Application
Transport
Network (IP)
Link
Physical
What is Routing?

Routing is the core function of a network

It ensures that

- information accepted for transfer
- at a source node
- is delivered to the correct
- set of destination nodes,
- at reasonable levels of performance.
Internet Routing

- Internet organized as a two level hierarchy
- First level – autonomous systems (AS’s)
 - AS – region of network under a single administrative domain
- AS’s run an intra-domain routing protocols
 - Distance Vector, e.g., Routing Information Protocol (RIP)
 - Link State, e.g., Open Shortest Path First (OSPF)
- Between AS’s runs inter-domain routing protocols, e.g., Border Gateway Routing (BGP)
 - De facto standard today, BGP-4

Example
Intra-domain Routing Protocols

- Based on unreliable datagram delivery
- Distance vector
 - Routing Information Protocol (RIP), based on Bellman-Ford
 - Each neighbor periodically exchange reachability information to its neighbors
 - Minimal communication overhead, but it takes long to converge, i.e., in proportion to the maximum path length
- Link state
 - Open Shortest Path First (OSPF), based on Dijkstra
 - Each network periodically floods immediate reachability information to other routers
 - Fast convergence, but high communication and computation overhead

Routing

- Goal: determine a “good” path through the network from source to destination
 - Good means usually the shortest path
- Network modeled as a graph
 - Routers \(\rightarrow\) nodes
 - Link \(\rightarrow\) edges
 - Edge cost: delay, congestion level,…
Outline

- Link State
 - Distance Vector

Link State: Control Traffic

- Each node floods its local information to every other node in the network
- Each node ends up knowing the entire network topology → use Dijkstra to compute the shortest path to every other node
A Link State Routing Algorithm

Dijkstra’s algorithm
- Net topology, link costs known to all nodes
 - Accomplished via “link state flooding”
 - All nodes have same info
- Compute least cost paths from one node (“source”) to all other nodes
- Iterative: after k iterations, know least cost paths to k closest destinations

Notations
- $c(i,j)$: link cost from node i to j, cost infinite if not direct neighbors
- $D(v)$: current value of cost of path from source to destination v
- $p(v)$: predecessor node along path from source to v, that is next to v
- S: set of nodes whose least cost path definitively known
Dijsktra’s Algorithm

1. **Initialization:**
 2. \(S = \{A\} \);
 3. for all nodes \(v \)
 4. if \(v \) adjacent to \(A \)
 5. then \(D(v) = c(A,v) \);
 6. else \(D(v) = \infty \);
 7.

8. **Loop**
 9. find \(w \) not in \(S \) such that \(D(w) \) is a minimum;
 10. add \(w \) to \(S \);
 11. update \(D(v) \) for all \(v \) adjacent to \(w \) and not in \(S \):
 \[D(v) = \min(D(v), D(w) + c(w,v)) \]
 // new cost to \(v \) is either old cost to \(v \) or known
 // shortest path cost to \(w \) plus cost from \(w \) to \(v \)
 12. until all nodes in \(S \);

Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start</th>
<th>(D(B),p(B))</th>
<th>(D(C),p(C))</th>
<th>(D(D),p(D))</th>
<th>(D(E),p(E))</th>
<th>(D(F),p(F))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Initialization:**
 2. \(S = \{A\} \);
 3. for all nodes \(v \)
 4. if \(v \) adjacent to \(A \)
 5. then \(D(v) = c(A,v) \);
 6. else \(D(v) = \infty \);
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td>2,D</td>
<td>2,D</td>
<td>4,E</td>
<td>4,E</td>
</tr>
</tbody>
</table>

Loop:
9. find w not in S s.t. D(w) is a minimum;
10. add w to S;
11. update D(v) for all v adjacent to w and not in S:
12. \(D(v) = \min(D(v), D(w) + c(w,v)) \);
13. until all nodes in S;

Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td>2,D</td>
<td>2,D</td>
<td>4,E</td>
<td>4,E</td>
</tr>
</tbody>
</table>

Loop:
9. find w not in S s.t. D(w) is a minimum;
10. add w to S;
11. update D(v) for all v adjacent to w and not in S:
12. \(D(v) = \min(D(v), D(w) + c(w,v)) \);
13. until all nodes in S;
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...

Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 $D(v) = \min(D(v), D(w) + c(w,v))$;
13 until all nodes in S;
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td>2,D</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td>4,E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ADEBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ADEBCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... Loop
8. find w not in S s.t. D(w) is a minimum;
9. add w to S;
10. update D(v) for all v adjacent to w and not in S:
11. \(D(v) = \min(D(v), D(w) + c(w,v)) \);
12. until all nodes in S;

Complexity

- Assume a network consisting of \(n \) nodes
 - Each iteration: need to check all nodes, w, not in S
 - \(n^2 \) comparisons: \(O(n^2) \)
 - More efficient implementations possible: \(O(n \log(n)) \)
Oscillations

- Assume link cost = amount of carried traffic

```
A -> D: 1 + e
D -> B: 0
B -> C: 0
C -> A: 1 + e
```
Initially

```
A -> D: 1 + e
D -> B: e
B -> C: 1 + e
C -> A: 1 + e
```
... recompute routing

```
A -> D: 2 + e
D -> B: 0
B -> C: 0
C -> A: 2 + e
```
... recompute

- How can you avoid oscillations?

Outline

- Link State
 - Distance Vector
Distance Vector: Control Traffic

- When the routing table of a node changes, the node sends its table to its neighbors
- A node updates its table with information received from its neighbors

Distance Vector Routing Algorithm

- Iterative: continues until no nodes exchange info
- Asynchronous: nodes need *not* exchange info/iterate in lock steps
- Distributed: each node communicates *only* with directly-attached neighbors
- Each router maintains
 - Row for each possible destination
 - Column for each directly-attached neighbor to node
 - Entry in row Y and column Z of node X ⇒ best known distance from X to Y, via Z as next hop (remember this!)

Note: for simplicity in this lecture examples we show only the shortest distances to each destination
Distance Vector Routing

- Each local iteration caused by:
 - Local link cost change
 - Message from neighbor: its least cost path change from neighbor to destination
- Each node notifies neighbors only when its least cost path to any destination changes
 - Neighbors then notify their neighbors if necessary

Each node:
- wait for (change in local link cost or msg from neighbor)
- recompute distance table if least cost path to any dest has changed, notify neighbors

Distance Vector Algorithm (cont’d)

1. **Initialization:**
 2. for all neighbors V do
 3. if V adjacent to A
 4. $D(A, V) = c(A, V)$;
 5. else
 6. $D(A, V) = \infty$;
 7. loop:
 8. wait (until A sees a link cost change to neighbor V or until A receives update from neighbor V)
 9. if $D(A, V)$ changes by d
 10. for all destinations Y through V do
 12. else if (update $D(V, Y)$ received from V)
 14. else if (there is a new minimum for destination Y)
 15. send $D(A, Y)$ to all neighbors
 16. forever
Example: Distance Vector Algorithm

1. **Initialization:**
 2. for all neighbors V do
 3. if V adjacent to A
 4. $D(A, V) = c(A, V)$;
 5. else
 6. $D(A, V) = \infty$;

Example: 1st Iteration ($C \rightarrow A$)

7. loop:
 13. else if (update $D(V, Y)$ received from V)
 15. if (there is a new min. for destination Y)
 16. send $D(A, Y)$ to all neighbors
 17. forever
Example: 1st Iteration (B→A, C→A)

Node A

<table>
<thead>
<tr>
<th>Dest</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>B</td>
</tr>
</tbody>
</table>

Node B

<table>
<thead>
<tr>
<th>Dest</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>D</td>
</tr>
</tbody>
</table>

\[
D(A,D) = D(A,B) + D(B,D) = 2 + 3 = 5 \quad D(A,C) = D(A,B) + D(B,C) = 2 + 1 = 3
\]

Node C

<table>
<thead>
<tr>
<th>Dest</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>D</td>
</tr>
</tbody>
</table>

Node D

<table>
<thead>
<tr>
<th>Dest</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>∞</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
</tbody>
</table>

loop:

13 else if (update \(D(V,Y) \) received from \(V \))
14 \(D(A,Y) = \min(D(A,V), D(A,V) + D(V,Y)) \);
15 if (there is a new min. for destination \(Y \))
16 send \(D(A,Y) \) to all neighbors
17 forever

Example: End of 1st Iteration

Node A

<table>
<thead>
<tr>
<th>Dest</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>B</td>
</tr>
</tbody>
</table>

Node B

<table>
<thead>
<tr>
<th>Dest</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>C</td>
</tr>
</tbody>
</table>

Node C

<table>
<thead>
<tr>
<th>Dest</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>D</td>
</tr>
</tbody>
</table>

Node D

<table>
<thead>
<tr>
<th>Dest</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
</tbody>
</table>

loop:

13 else if (update \(D(V,Y) \) received from \(V \))
14 \(D(A,Y) = \min(D(A,V), D(A,V) + D(V,Y)) \);
15 if (there is a new min. for destination \(Y \))
16 send \(D(A,Y) \) to all neighbors
17 forever
Example: End of 2nd Iteration

```
loop:

13 else if (update D(V, Y) received from V)
14     D(A, Y) = D(A, V) + D(V, Y);
15 if (there is a new min. for destination Y)
16     send D(A, Y) to all neighbors
17 forever
```

Example: End of 3rd Iteration

```
loop:

13 else if (update D(V, Y) received from V)
14     D(A, Y) = D(A, V) + D(V, Y);
15 if (there is a new min. for destination Y)
16     send D(A, Y) to all neighbors
17 forever
```

Nothing changes → algorithm terminates
Distance Vector: Link Cost Changes

7 \textbf{loop:}
8 \textbf{wait} (until \(A \) sees a link cost change to neighbor \(V \))
9 \textbf{or} until \(A \) receives update from neighbor \(V \)
10 \textbf{if} \(D(A, V) \) changes by \(\delta \)
11 \textbf{for all} destinations \(Y \) through \(V \) \textbf{do}
12 \(D(A, Y) = D(A, Y) + \delta \)
13 \textbf{else if} (update \(D(V, Y) \) received from \(V \))
14 \(D(A, Y) = D(A, V) + D(V, Y) \)
15 \textbf{if} (there is a new minimum for destination \(Y \))
16 \textbf{send} \(D(A, Y) \) to all neighbors
17 \textbf{forever}

Node B
\begin{tabular}{ccc}
\hline
 A \& 4 \& A \\
 C \& 1 \& B \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline
 D \& C \& N \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline
 A \& 1 \& A \\
 C \& 1 \& B \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline
 D \& C \& N \\
\hline
\end{tabular}

Node C
\begin{tabular}{ccc}
\hline
 A \& 5 \& B \\
 B \& 1 \& B \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline
 D \& C \& N \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline
 A \& 5 \& B \\
 B \& 1 \& B \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline
 D \& C \& N \\
\hline
\end{tabular}

Link cost changes here
Algorithm terminates

“good news travels fast”

Distance Vector: Count to Infinity Problem

7 \textbf{loop:}
8 \textbf{wait} (until \(A \) sees a link cost change to neighbor \(V \))
9 \textbf{or} until \(A \) receives update from neighbor \(V \)
10 \textbf{if} \(D(A, V) \) changes by \(\delta \)
11 \textbf{for all} destinations \(Y \) through \(V \) \textbf{do}
12 \(D(A, Y) = D(A, Y) + \delta \)
13 \textbf{else if} (update \(D(V, Y) \) received from \(V \))
14 \(D(A, Y) = D(A, V) + D(V, Y) \)
15 \textbf{if} (there is a new minimum for destination \(Y \))
16 \textbf{send} \(D(A, Y) \) to all neighbors
17 \textbf{forever}

Node B
\begin{tabular}{ccc}
\hline
 A \& 4 \& A \\
 C \& 1 \& B \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline
 D \& C \& N \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline
 A \& 6 \& C \\
 C \& 1 \& B \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline
 D \& C \& N \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline
 A \& 8 \& C \\
 C \& 1 \& B \\
\hline
\end{tabular}

Node C
\begin{tabular}{ccc}
\hline
 A \& 5 \& B \\
 B \& 1 \& B \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline
 D \& C \& N \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline
 A \& 7 \& B \\
 B \& 1 \& B \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline
 D \& C \& N \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline
 A \& 2 \& B \\
 B \& 1 \& B \\
\hline
\end{tabular}

Link cost changes here: recall from slide 24 that B also maintains shortest distance to A through C, which is 6. Thus \(D(B, A) \) becomes 6!

“bad news travels slowly”
Distance Vector: Poisoned Reverse

- If C routes through B to get to A:
 - C tells B its (C’s) distance to A is infinite (so B won’t route to A via C)
 - Will this completely solve count to infinity problem?

 ![Diagram of network with nodes A, B, and C showing link costs and updates]

Node B

- \[D(B, A) = 60 \]
- \[D(C, A) = \text{infinite} \]

Node C

- \[D(C, C) = \text{infinite} \]
- \[D(C, A) = 60 \]

Link cost changes here: B updates \(D(B, A) = 60 \) as C has advertised \(D(C, A) = \infty \)

Algorithm terminates

Link State vs. Distance Vector

Per node message complexity

- **LS**: \(O(n^2) \) messages; \(n \) – number of nodes; \(e \) – number of edges
- **DV**: \(O(d) \) messages; where \(d \) is node’s degree

Complexity

- **LS**: \(O(n^2) \) with \(O(n^2) \) messages
- **DV**: convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?

- **LS**:
 - node can advertise incorrect *link* cost
 - each node computes only its *own* table

- **DV**:
 - node can advertise incorrect *path* cost
 - each node’s table used by others; error propagate through network