EECS 122: Introduction to Computer Networks

Interdomain Routing

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720-1776

Today’s Lecture

2

Application
Transport
Network (IP)
Link
Physical

6.7

4

2
Distance Vector: Link Cost Changes

7 loop:
8 wait (until A sees a link cost change to neighbor V
9 or until A receives update from neighbor V)
10 if $(D(A, V)$ changes by d)
11 for all destinations Y through V do
12 $D(A, Y) = D(A, Y) + d$
13 else if (update $D(V, Y)$ received from V)
14 $D(A, Y) = D(A, V) + D(V, Y)$;
15 if (there is a new minimum for destination Y)
16 send $D(A, Y)$ to all neighbors
17 forever

Node B

<table>
<thead>
<tr>
<th>Time</th>
<th>D</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1A</td>
<td>C1C</td>
<td>C1C</td>
</tr>
<tr>
<td>2</td>
<td>A1A</td>
<td>C1C</td>
<td>C1C</td>
</tr>
<tr>
<td>3</td>
<td>A1A</td>
<td>C1C</td>
<td>C1C</td>
</tr>
</tbody>
</table>

Node C

<table>
<thead>
<tr>
<th>Time</th>
<th>D</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A5B</td>
<td>B1B</td>
<td>B1B</td>
</tr>
<tr>
<td>2</td>
<td>A5B</td>
<td>B1B</td>
<td>B1B</td>
</tr>
<tr>
<td>3</td>
<td>A2B</td>
<td>B1B</td>
<td>B1B</td>
</tr>
</tbody>
</table>

“good news travels fast”

Distance Vector: Count to Infinity Problem

7 loop:
8 wait (until A sees a link cost change to neighbor V
9 or until A receives update from neighbor V)
10 if $(D(A, V)$ changes by d)
11 for all destinations Y through V do
12 $D(A, Y) = D(A, Y) + d$
13 else if (update $D(V, Y)$ received from V)
14 $D(A, Y) = D(A, V) + D(V, Y)$;
15 if (there is a new minimum for destination Y)
16 send $D(A, Y)$ to all neighbors
17 forever

Node B

<table>
<thead>
<tr>
<th>Time</th>
<th>D</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A4A</td>
<td>C1C</td>
<td>C1C</td>
</tr>
<tr>
<td>2</td>
<td>A6C</td>
<td>C1C</td>
<td>C1C</td>
</tr>
<tr>
<td>3</td>
<td>A8C</td>
<td>C1C</td>
<td>C1C</td>
</tr>
</tbody>
</table>

Node C

<table>
<thead>
<tr>
<th>Time</th>
<th>D</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A5B</td>
<td>B1B</td>
<td>B1B</td>
</tr>
<tr>
<td>2</td>
<td>A5B</td>
<td>B1B</td>
<td>B1B</td>
</tr>
<tr>
<td>3</td>
<td>A7B</td>
<td>B1B</td>
<td>B1B</td>
</tr>
</tbody>
</table>

“bad news travels slowly”

Link cost changes here; recall from slide 24 that B also maintains shortest distance to A through C, which is 6. Thus D(B, A) becomes 6! EECS F05 4
Distance Vector: Poisoned Reverse

- If C routes through B to get to A:
 - C tells B its (C's) distance to A is infinite (so B won’t route to A via C)
 - Will this completely solve count to infinity problem?

![Distance Vector Diagram]

<table>
<thead>
<tr>
<th>Node B</th>
<th>D</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4 A</td>
<td>A 60 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 1 B</td>
<td>C 1 B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node C</th>
<th>D</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 5 B</td>
<td>A 5 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 1 B</td>
<td>B 1 B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Link cost changes here: B updates \(D(B, A) = 60 \) as C has advertised \(D(C, A) = \infty \)

Algorithm terminates

Link State vs. Distance Vector

Per-node message complexity
- **LS**: \(O(e) \) messages
 - \(e \): number of edges
- **DV**: \(O(d) \) messages, many times
 - \(d \) is node’s degree

Complexity/Convergence
- **LS**: \(O(n^2) \) computation
- **DV**: convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?
- **LS**:
 - node can advertise incorrect *link* cost
 - each node computes only its *own* table
- **DV**:
 - node can advertise incorrect *path* cost
 - each node's table used by others; error propagate through network
Are We Done?

- We now know how to route scalably
- What more is there to do?

Issues We Haven’t Addressed

- Scaling
 - Router table size
- Structure
 - Autonomy
 - Policy
Scaling

- Every router must be able to forward based on *any* destination IP address
 - Given address, it needs to know “next hop” (table)
- Naive: Have an entry for each address
 - There would be 10^8 entries!
- Better: Have an entry for a range of addresses
 - But can’t do this if addresses are assigned randomly!
- Addresses allocation is a big deal

Network Structure

The Internet contains a large number of diverse networks
 Autonomous Systems (AS)

- Internet is not a single network!
- The Internet is a collection of networks, each controlled by different administrations
- An autonomous system (AS) is a network under a single administrative control

Implications

- ASs want to choose own local routing algorithm
 - Intra-domain routing algorithm, e.g., link state (OSPF), distance vector

- ASs want to choose own nonlocal routing policy
 - Inter-domain routing: BGP de facto standard
Interconnection

- IP unifies network technologies
 - Allows any network to communicate with another

- BGP unifies network organizations
 - Ties them into a global Internet

Outline

- Addressing

- BGP
Assigning Addresses (Ideally)

- Host: gets IP address from its organization or ISP
- Organization: gets IP address block from ISP
- ISP: gets address block from routing registry:
 - ARIN: American Registry for Internet Numbers
 - RIPE: Reseaux IP Europeens
 - APNIC: Asia Pacific Network Information Center

- Each AS is assigned a 16-bit number (65536 total)
 - Currently 10,000 AS’s

Original Addressing Scheme

- Class-based addressing schemes:
 - 32 bits divided into 2 parts:
 - Class A
 - 0 8
 - network
 - host
 - 126 nets
 - ~16M hosts
 - Class B
 - 0 16
 - network
 - host
 - ~16K nets
 - ~65K hosts
 - Class C
 - 0 24
 - network
 - host
 - ~2M nets
 - 254 hosts

Original Vision:
- Route on network number
- All nodes with same net # are directly connected
Classless Interdomain Routing (CIDR)

Introduced to solve two problems:

- Exhaustion of IP address space
- Size and growth rate of routing table

#1: Address Space Exhaustion

- Example: an organization needs 500 addresses.
 - A single class C address not enough (254 hosts).
 - Instead a class B address is allocated. (~65K hosts)
 - That’s overkill, a huge waste!

- CIDR: networks assigned on arbitrary bit boundaries.
 - Requires explicit masks to be passed in routing protocols
 - Masks: identify the “network” portion of the address

- CIDR solution for example above: organization is allocated a single /23 address (equivalent of 2 class C’s).
CIDR Addressing

- Suppose fifty computers in a network are assigned IP addresses 128.23.9.0 - 128.23.9.49
 - They share the **prefix** 128.23.9
- **Range:** 01111111 00001111 00001001 00000000 to 01111111 00001111 00001001 00110001
 - How to write 01111111 00001111 00001001 00XX XXXX ?
- **Convention:** 128.23.9.0/26
 - There are \(2^6 = 64\) addresses
- **Maximal waste:** 50%

More Formally

- **Specify a range of addresses by a prefix:** \(X/Y\)
 - The common prefix is the first \(Y\) bits of \(X\).
 - \(X\): The first address in the range has prefix \(X\)
 - \(Y\): \(2^{32-Y}\) addresses in the range
- **Example 128.5.10/23**
 - Common prefix is 23 bits:
 - 01000000 00000101 0000101
 - Number of addresses: \(2^9 = 512\)
- **Prefix aggregation**
 - Combine two address ranges
 - 128.5.10/24 and 128.5.11/24 gives 128.5.10/23
- **Routers match to longest prefix**
Problem #2: Routing Table Size

Without CIDR:

- 232.71.0.0
- 232.71.1.0
- 232.71.2.0
- 232.71.255.0

With CIDR:

- 232.71.0.0/16

Border Gateway Protocol

ignore the details

pay attention to the “why”
Who speaks BGP?

- Two types of routers
 - Border router (Edge), Internal router (Core)

Purpose of BGP

Share connectivity information across ASes
I-BGP and E-BGP

Issues

- What basic routing algorithm should BGP use?
- How are the routes advertised?
- How are routing policies implemented?
 - Policy routing: not always shortest path
Choice of Routing Algorithm

- Constraints:
 - Scaling
 - Autonomy (policy and privacy)
- Link-state?
 - Requires sharing of complete network information
 - Information exchanges don’t scale
 - All policies exposed
- Distance Vector?
 - Scales and retains privacy
 - Can’t implement policy
 - Can’t avoid loops if shortest paths not taken

Path Vector Protocol

- Distance vector algorithm with extra information
 - For each route, store the complete path (ASs)
 - No extra computation, just extra storage
- Advantages:
 - Can make policy choices based on set of ASs in path
 - Can easily avoid loops
BGP Routing Table

```
ner-routes>show ip bgp
BGP table version is 6128791, local router ID is 4.2.34.165
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>We ight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* i3.0.0.0</td>
<td>4.0.6.142</td>
<td>1000</td>
<td>50</td>
<td>0</td>
<td>701 i</td>
</tr>
<tr>
<td>* i4.0.0.0</td>
<td>4.24.1.35</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>701 e</td>
</tr>
<tr>
<td>* i12.3.21.0/23</td>
<td>192.205.32.153</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>7018 4264 6468 ?</td>
</tr>
<tr>
<td>* e128.32.0.0/16</td>
<td>192.205.32.153</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>7018 4264 6468 25 e</td>
</tr>
</tbody>
</table>
```

- Every route advertisement contains the entire AS path
- Can implement policies for choosing best route
- Can detect loops at an AS level

Advertising Routes

- One router can participate in many BGP sessions.
- *Initially* … node advertises ALL routes it wants neighbor to know (could be > 50K routes)
- *Ongoing* … only inform neighbor of changes
Basic Messages in BGP

- **Open**: Establishes BGP session (uses TCP port #179)
 - BGP uses TCP
- **Notification**: Report unusual conditions
- **Update**: Inform neighbor of new routes that become active
 - Inform neighbor of old routes that become inactive
- **Keepalive**: Inform neighbor that connection is still viable

Routes Have Attributes

- When a route is “advertised” it is described in terms of attributes:
 - next hop, AS-path, etc.
 - We will discuss: Origin, MED, Local Preference
- **Origin**: Who originated the announcement? Where was a prefix injected into BGP?
 - IGP, EGP or Incomplete (often used for static routes)
Multi-Exit Discriminator (MED)

- When AS's interconnected via 2 or more links
- AS announcing prefix sets MED (AS2 in picture)
- AS receiving prefix uses MED to select link
- A way to specify how close a prefix is to the link it is announced on

![Diagram of MED](image)

Local Preference

- Used to indicate preference among multiple paths for the same prefix *anywhere* in the Internet.
- The higher the value the more preferred
- Exchanged between IBGP peers only. Local to the AS.
- Often used to select a specific exit point for a particular destination

![Diagram of Local Preference](image)

BGP table at AS4:

<table>
<thead>
<tr>
<th>Destination</th>
<th>AS Path</th>
<th>Local Pref</th>
</tr>
</thead>
<tbody>
<tr>
<td>140.20.1.0/24</td>
<td>AS3 AS1</td>
<td>300</td>
</tr>
<tr>
<td>140.20.1.0/24</td>
<td>AS2 AS1</td>
<td>100</td>
</tr>
</tbody>
</table>
Choosing Best Route

- Choose route with highest LOCAL_PREF
 - Preference-based routing
- Multiple choices: select route with shortest hop-count
- Multiple choices for same neighboring AS: choose path with min MED value
- Choose route based on lowest origin type
 - IGP < EGP < INCOMPLETE
- Among IGP paths, choose one with lowest cost
- Finally use router ID to break the tie.

Is Reachability Guaranteed?

- In normal routing, if graph is connected then reachability is assured
- With policy routing, not always
BGP and Performance

- BGP designed for policy not performance
 - Hot Potato routing common but suboptimal
 - 20% of internet paths inflated by at least 5 router hops

- Susceptible to router misconfiguration
 - Blackholes: announce a route you cannot reach

- Incompatible policies
 - Solutions to limit the set of allowable policies