Packet Scheduling

- Decide when and what packet to send on output link
 - Usually implemented at output interface of a router
Goals of Packet Scheduling

- Provide per flow/aggregate QoS guarantees in terms of delay and bandwidth
- Provide per flow/aggregate protection
- Flow/Aggregate identified by a subset of following fields in the packet header
 - source/destination IP address (32 bits)
 - source/destination port number (16 bits)
 - protocol type (8 bits)
 - type of service (8 bits)
- Examples:
 - All packets from machine A to machine B
 - All packets from Berkeley
 - All packets between Berkeley and MIT
 - All TCP packets from EECS-Berkeley

Outline

- Token Bucket and Arrival Curve
- Weighted Fair Queueing (WFQ)
- Link sharing
Token Bucket

- A simple traffic model used to:
 - Enforce traffic sent by a sender (e.g., cable modem)
 - Characterize the traffic sent by a sender

- Parameters
 - r – average rate, i.e., rate at which tokens fill the bucket
 - b – bucket depth
 - R – maximum link capacity or peak rate (optional parameter)

- A bit is transmitted only when there is an available token

![Diagram of token bucket model]

Maximum # of bits sent

- $b \times R / (R - r)$
- slope R
- slope r

regulator

r bps

b bits

<= R bps

bits

time
Traffic Enforcement: Example

- \(r = 100 \text{ Kbps} \); \(b = 3 \text{ Kb} \); \(R = 500 \text{ Kbps} \)

(a) \(3\text{Kb} \)

- \(T = 0 \): 1Kb packet arrives

(b) \(2.2\text{Kb} \)

- \(T = 2\text{ms} \): packet transmitted
 - \(b = 3\text{Kb} - 1\text{Kb} + 2\text{ms} \times 100\text{Kbps} = 2.2\text{Kb} \)

(c) \(2.4\text{Kb} \)

- \(T = 4\text{ms} \): 3Kb packet arrives

(d) \(3\text{Kb} \)

- \(T = 10\text{ms} \): packet needs to wait until enough tokens are in the bucket!

(e) \(0.6\text{Kb} \)

- \(T = 16\text{ms} \): packet transmitted

Source Traffic Characterization: Arrival Curve

- Arrival curve – maximum amount of bits transmitted during an interval of time \(\Delta t \)
- Use token bucket to bound the arrival curve
Arrival Curve: Example

- Arrival curve – maximum amount of bits transmitted during an interval of time Δt
- Use token bucket to bound the arrival curve

![Arrival Curve Diagram]

QoS Guarantees: Per-hop Reservation

- **End-host**: specify
 - the arrival rate characterized by token-bucket with parameters (b,r,R)
 - the maximum maximum admissible delay D, no losses
- **Router**: allocate bandwidth r_a and buffer space B_a such that
 - no packet is dropped
 - no packet experiences a delay larger than D

![QoS Guarantees Diagram]
Packet Scheduling

- Make sure that at any time the flow receives at least the allocated rate r_a

- The canonical example of such scheduler: Weighted Fair Queueing (WFQ)

Outline

- Token Bucket and Arrival Curve
 - Weighted Fair Queueing (WFQ)
- Link sharing
Recap: Fair Queueing

- Implements max-min fairness: each flow receives $\min(r_i, f)$, where
 - r_i – flow arrival rate
 - f – link fair rate (see next slide)

- Weighted Fair Queueing (WFQ) – associate a weight with each flow

Fair Rate Computation: Example 1

- If link congested, compute f such that
 \[\sum_i \min(r_i, f) = C \]

\[f = 4; \]
\[\min(8, 4) = 4 \]
\[\min(6, 4) = 4 \]
\[\min(2, 4) = 2 \]
Fair Rate Computation: Example 2

- Associate a weight w_i with each flow i
- If link congested, compute f such that

\[\sum_i \min(r_i, f \times w_i) = C \]

Fluid Flow System

- Flows can be served one bit at a time
- WFQ can be implemented using bit-by-bit weighted round robin
 - During each round from each flow that has data to send, send a number of bits equal to the flow's weight
Fluid Flow System: Example 1

Flow 1 \((w_1 = 1) \)

Flow 2 \((w_2 = 1) \)

<table>
<thead>
<tr>
<th></th>
<th>Packet Size (bits)</th>
<th>Packet Inter-arrival Time (ms)</th>
<th>Rate (Kbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow 1</td>
<td>1000</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Flow 2</td>
<td>500</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

Flow 1 (arrival traffic)

1 2 3 4 5

Service in fluid flow system

0 10 20 30 40 50 60 70 80

Flow 2 (arrival traffic)

1 2 3 4 5 6

Fluid Flow System: Example 2

- Red flow has packets backlogged between time 0 and 10
 - Backlogged flow \(\rightarrow \) flow's queue not empty
- Other flows have packets continuously backlogged
- All packets have the same size

Red flow has packets backlogged between time 0 and 10

- Backlogged flow \(\rightarrow \) flow's queue not empty

Other flows have packets continuously backlogged

All packets have the same size
Implementation In Packet System

- Packet (Real) system: packet transmission cannot be preempted. Why?

- Solution: serve packets in the order in which they would have finished being transmitted in the fluid flow system

Packet System: Example 1

- Select the first packet that finishes in the fluid flow system
Packet System: Example 2

- Select the first packet that finishes in the fluid flow system

Implementation Challenge

- Need to compute the finish time of a packet in the fluid flow system...

 ... but the finish time may change as new packets arrive!

- Need to update the finish times of all packets that are in service in the fluid flow system when a new packet arrives
 - But this is very expensive; a high speed router may need to handle hundred of thousands of flows!
Example

- Four flows, each with weight 1

Flow 1
Flow 2
Flow 3
Flow 4

Finish times computed at time 0

0 1 2 3
Finish times re-computed at time ε

0 1 2 3 4

Solution: Virtual Time

- Key Observation: while the finish times of packets may change when a new packet arrives, the order in which packets finish doesn’t!
 - Only the order is important for scheduling

- Solution: instead of the packet finish time maintain the number of rounds needed to send the remaining bits of the packet (virtual finishing time)
 - Virtual finishing time doesn’t change when the packet arrives

- System virtual time – index of the round in the bit-by-bit round robin scheme
System Virtual Time: \(V(t) \)

- Measure service, instead of time
- \(V(t) \) slope – normalized rate at which every backlogged flow receives service in the fluid flow system
 - \(C \) – link capacity
 - \(N(t) \) – total weight of backlogged flows in fluid flow system at time \(t \)

\[
\frac{\partial V(t)}{\partial t} = \frac{C}{N(t)}
\]

System Virtual Time (\(V(t) \)): Example 1

- \(V(t) \) increases inversely proportionally to the sum of the weights of the backlogged flows

Flow 1 (\(w1 = 1 \))
Flow 2 (\(w2 = 1 \))
System Virtual Time: Example

Define
- F^k_i - virtual finishing time of packet k of flow i
- d^k_i - arrival time of packet k of flow i
- L^k_i - length of packet k of flow i
- w_i - weight of flow i

The finishing time of packet $k+1$ of flow i is

$$F^k_{i,\text{end}} = \max(V(d^k_{i,\text{end}}), F^k_i) + \frac{L^{k+1}_i}{w_i}$$
Properties of WFQ

- Guarantee that any packet is transmitted within \(\frac{\text{packet length}}{\text{link capacity}} \) of its transmission time in the fluid flow system
 - Can be used to provide guaranteed services

- Achieve max-min fair allocation
 - Can be used to protect well-behaved flows against malicious flows

Outline

- Token Bucket and Arrival Curve
- Weighted Fair Queueing (WFQ)
 - Link sharing
Hierarchical Link Sharing

- Resource contention/sharing at different levels
- Resource management policies should be set at different levels, by different entities
 - Resource owner
 - Service providers
 - Organizations
 - Applications

Hierarchical WFQ (H-WFQ) Example

- Red session has packets backlogged at time 5
- Other sessions have packets continuously backlogged

First red packet arrives at 5 ...and it is served at 7.5
Packet Approximation of H-WFQ

- **Idea 1**
 - Select packet finishing first in H-WFQ assuming there are no future arrivals
 - Problem:
 - Finish order in system dependent on future arrivals
 - Virtual time implementation won’t work

- **Idea 2**
 - Use a hierarchy of WFQ to approximate H-WFQ

Problems with Idea 1

- The order of the 4th blue packet finish time and of the first green packet finish time changes as a result of a red packet arrival
Problem with Idea 2

- A packet on the second level can miss its deadline (finish time)

First red packet arrives at 5 …but it is served at 11!

Solution

- Hierarchical-WFQ with a better implementation of WFQ, called Worst-Case Weighted Fair Queueing (WF2Q)

- Main idea of WF2Q
 - Consider for scheduling only eligible packets
 - Eligible packet at time t: a packet that has started being serviced in the fluid flow system at time t
Example

Fluid-Flow System

WFQ (smallest finish time first)

WF2Q (smallest eligible finish time first)

Hierarchical-WF2Q Example

- In WF2Q, all packets meet their deadlines modulo time to transmit a packet (at the line speed) at each level.

 First red packet arrives at 5
 ...and it is served at 7
What You Need to Know

- **Basic concepts**
 - Arrival & service curve
 - Token-bucket specification
 - System virtual time / finish virtual time
 - WFQ properties
 - Link sharing requirements and challenges

- **Mechanisms:**
 - WFQ implementation in the fluid flow & packet system

- **You don’t need to know**
 - Details of WF2Q
 - How service curve works