Motivation Example: Internet Radio

- www.digitallyimported.com (techno station)
 - Sends out 128Kb/s MP3 music streams
 - Peak usage ~9000 simultaneous streams
 - Only 5 unique streams (trance, hard trance, hard house, eurodance, classical)
 - Consumes ~1.1Gb/s
 - Bandwidth costs are large fraction of their expenditures (maybe 50%?)
 - If 1000 people are getting their groove on in Berkeley, 1000 unicast streams are sent from NYC to Berkeley
This approach does not scale...

Instead build trees

Copy data at routers
At most one copy of a data packet per link

• Routers keep track of groups in real-time
• Routers compute trees and forward packets along them

• LANs implement link layer multicast by broadcasting
Multicast Routing Approaches

- Kinds of Trees
 - Source Specific Trees
 - Shared Tree

- Tree Computation Methods
 - Link state
 - Distance vector

Source Specific Trees

- Each source is the root of its own tree
- One tree per source
- Tree can consist of shortest paths to each receiver
Source Specific Trees

- Each source is the root of its own tree
- One tree per source
- Tree can consist of shortest paths to each receiver

Very good performance but expensive to construct/maintain; routers need to manage a tree per source.

Shared Tree

One tree used by all members in a group

Easier to construct/maintain but hard to pick "good" trees for everyone!
Shared Tree

- Ideally, find a Steiner tree - the minimum-weighted tree connecting only the multicast members.

Finding Steiner Tree is NP hard.

Heuristics are known.
Alternatively, find a minimum-spanning tree – minimum-weighted tree connecting all nodes in the network. Finding a minimum spanning tree is much easier. How?
Shared Tree

- Alternatively, find a minimum-spanning tree – minimum-weighted tree connecting all nodes in the network
- Finding a minimum spanning tree is easier. How?
- Prune back to get multicast tree

Multicast Service Model

- Receivers join a multicast group which is identified by a multicast address (e.g. G)
- Sender(s) send data to address G
- Network routes data to each of the receivers

- Note: multicast vs. broadcast
 - Broadcast: packets are delivered to all end-hosts in the network
 - Multicast: packets are delivered only to end-hosts that are in (have joined) the multicast group
Multicast Service Model (cont’d)

- Membership access control
 - open group: anyone can join
 - closed group: restrictions on joining
- Sender access control
 - anyone can send to group
 - anyone in group can send to group
 - restrictions on which host can send to group

Multicast and Layering

- Multicast can be implemented at different layers
 - data link layer
 - e.g. Ethernet multicast
 - network layer
 - e.g. IP multicast
 - application layer
 - e.g. End system multicast
- Which layer is best?
Multicast Implementation Issues

- How are multicast packets addressed?
- How is join implemented?
- How is send implemented?
- How much state is kept and who keeps it?

Data Link Layer Multicast

- Recall: end-hosts in the same local area network (LAN) can hear from each other at the data link layer (e.g., Ethernet)
- Reserve some data link layer addresses for multicast
- Join group at multicast address G
 - Network interface card (NIC) normally only listens for packets sent to unicast address A and broadcast address B
 - To join group G, NIC also listens for packets sent to multicast address G (NIC limits number of groups joined)
 - Implemented in hardware, thus efficient
- Send to group G
 - Packet is flooded on all LAN segments, like broadcast
 - Can waste bandwidth, but LANs should not be very large
- Only host NICs keep state about who has joined → scalable to large number of receivers, groups
Problems with Data Link Layer Multicast

- Single data link technology
- Single LAN
 - limited to small number of hosts
 - limited to low diameter latency
 - essentially all the limitations of LANs compared to internetworks

Network Layer (IP) Multicast

- Overcomes limitations of data link layer multicast
- Performs inter-network multicast routing
 - relies on data link layer multicast for intra-network routing
- Portion of IP address space defined as multicast addresses
 - \(2^{29}\) addresses for entire Internet
- Open group membership
- Anyone can send to group
 - flexible, but leads to problems
IP Multicast Routing

- Intra-domain
 - Distance-vector multicast
 - Link-state multicast
- Inter-domain
 - Protocol Independent Multicast
 - Single Source Multicast

Distance Vector Multicast Routing Protocol (DVRMP)

- An elegant extension to DV routing
- Use shortest path DV routes to determine if link is on the source-rooted spanning tree
- Three steps in developing DVRMP
 - Reverse Path Flooding
 - Reverse Path Broadcasting
 - Truncated Reverse Path Broadcasting
Reverse Path Flooding (RPF)

- Extension to DV unicast routing
- Packet forwarding
 - If incoming link is shortest path to source
 - Send on all links except incoming
 - Packets always take shortest path
 * assuming delay is symmetric
- Issues
 - Some links (LANs) may receive multiple copies
 - Every link receives each multicast packet, even if no interested hosts

Example

- Flooding can cause a given packet to be sent multiple times over the same link
- Solution: Reverse Path Broadcasting
Reverse Path Broadcasting (RPB)

- Chose parent of each link along reverse shortest path to source
- Only parent forward to a link (child link)
- Identify Child Links
 1. Routing updates identify parent
 2. Since distances are known, each router can easily figure out if it’s the parent for a given link
 3. In case of tie, lower address wins

Don’t Really Want to Flood!

- This is still a broadcast algorithm – the traffic goes everywhere
- Need to “Prune” the tree when there are subtrees with no group members
- Solution: Truncated Reverse Path Broadcasting
Truncated Reverse Path Broadcasting (TRPB)

- Extend DV/RPB to eliminate unneeded forwarding
- Identify leaves
 - Routers announce that a link is their next link to source S
 - Parent router can determine that it is not a leaf
- Explicit group joining on LAN
 - Members periodically (with random offset) multicast report locally
 - Hear an report, then suppress own
- Packet forwarding
 - If not a leaf router or have members
 - Out all links except incoming

Pruning Details

- Prune (Source,Group) at leaf if no members
 - Send Non-Membership Report (NMR) up tree
- If all children of router R send NRM, prune (S,G)
 - Propagate prune for (S,G) to parent R
- On timeout:
 - Prune dropped
 - Flow is reinstated
 - Down stream routers re-prune
- Note: a soft-state approach
Pruning Details

- How to pick prune timers?
 - Too long → large join time
 - Too short → high control overhead

- What do you do when a member of a group (re)joins?
 - Issue prune-cancellation message (grafts)

Distance Vector Multicast Scaling

- State requirements:
 - $O(Sources \times Groups)$ active state

- How to get better scaling?
 - Hierarchical Multicast
 - Core-based Trees
Core Based Trees (CBT)

- Pick a “rendevouz point” for the group called the core.
 - Shared tree
- Unicast packet to core and bounce it back to multicast group
- Tree construction is receiver-based
 - Joins can be tunneled if required
 - Only nodes on One tree per group tree involved
- Reduce routing table state from $O(S \times G)$ to $O(G)$

Example

- Group members: M1, M2, M3
- M1 sends data
Disadvantages

- Sub-optimal delay
- Single point of failure
 - Core goes out and everything lost until error recovery elects a new core
- Small, local groups with non-local core
 - Need good core selection
 - Optimal choice (computing topological center) is NP hard

Problems with Network Layer Multicast (NLM)

- Scales poorly with number of groups
 - A router must maintain state for every group that traverses it
 - Many groups traverse core routers
- Supporting higher level functionality is difficult
 - NLM: best-effort multi-point delivery service
 - Reliability and congestion control for NLM complicated
- Deployment is difficult and slow
 - ISP’s reluctant to turn on NLM
NLM Reliability

- Assume reliability through retransmission
- Sender can not keep state about each receiver
 - E.g., what receivers have received
 - Number of receivers unknown and possibly very large
- Sender can not retransmit every lost packet
 - Even if only one receiver misses packet, sender must retransmit, lowering throughput
- N(ACK) implosion
 - Described next

(N)ACK Implosion

- (Positive) acknowledgements
 - Ack every n received packets
 - What happens for multicast?
- Negative acknowledgements
 - Only ack when data is lost
 - Assume packet 2 is lost
NACK Implosion

- When a packet is lost all receivers in the sub-tree originated at the link where the packet is lost send NACKs

![Diagram of NACK Implosion]

Barriers to Multicast

- Hard to change IP
 - Multicast means change to IP
 - Details of multicast were very hard to get right

- Not always consistent with ISP economic model
 - Charging done at edge, but single packet from edge can explode into millions of packets within network

- Troublesome security model
 - Anyone can send to a group
 - Denial-of-service attacks on known groups
Application Layer Multicast (ALM)

- Let the hosts do all the “special” work
 - Only require unicast from infrastructure

- Basic idea:
 - Hosts do the copying of packets
 - Set up tree between hosts

- Example: Narada [Yang-hua et al, 2000]
 - Small group sizes <= hundreds of nodes
 - Typical application: chat

Narada: End System Multicast
Algorithmic Challenge

- Choosing replication/forwarding points among hosts
 - how do the hosts know about each other
 - and know which hosts should forward to other hosts

Advantages of ALM

- No need for changes to IP or routers
- No need for ISP cooperation
- End hosts can prevent other hosts from sending
- Easy to implement reliability
 - use hop-by-hop retransmissions
Performance Concerns

- **Stretch**
 - ratio of latency in the overlay to latency in the underlying network

- **Stress**
 - number of duplicate packets sent over the same physical link

Duplicate Packets: Bandwidth Wastage

Delay from CMU to Berk1 increases
Single Sender Multicast

- Many problems with IP multicast disappear if each group is associated with a single source

- Hosts joining multicast group can send join messages to source
 - this sets up delivery tree
 - no worry about “root” being in wrong place

- This solves several problems:
 - better security and charging model
 - simple algorithm

Example

- Group members: M1, M2, M3
What's Wrong with SSM?

- Multiple sources?
 - Can set up group per source, or...
 - Source can serve as relay for other senders

- Algorithm?
 - Trivial

- So, why isn't SSM the answer?
 - Multicast no longer serves as “rendezvous”
 - Ok for “broadcast” apps, not good for “meeting” apps

What Do You Need to Know?

- DVRMP
- CBT
- SSM
- How they compare