Motivation Example: Internet Radio

- **www.digitallyimported.com** (techno station)
 - Sends out 128Kb/s MP3 music streams
 - Peak usage ~9000 simultaneous streams
 - Only 5 unique streams (trance, hard trance, hard house, eurodance, classical)
 - Consumes ~1.1Gb/s
 - Bandwidth costs are a large fraction of their expenditures (maybe 50%?)
 - If 1000 people are getting their groove on in Berkeley, 1000 unicast streams are sent from NYC to Berkeley

Multicast Routing Approaches

- **Kinds of Trees**
 - Source Specific Trees
 - Shared Tree

- **Tree Computation Methods**
 - Link state
 - Distance vector

This approach does not scale...

Source Specific Trees

- Each source is the root of its own tree
- One tree per source
- Tree can consist of shortest paths to each receiver
Source Specific Trees

- Each source is the root of its own tree
- One tree per source
- Tree can consist of shortest paths to each receiver

Very good performance but expensive to construct/maintain; routers need to manage a tree per source

Shared Tree

- Ideally, find a Steiner tree — minimum-weighted tree connecting only the multicast members
- Finding Steiner Tree is NP hard
- Heuristics are known

Shared Tree

- One tree used by all members in a group

Easier to construct/maintain but hard to pick "good" trees for everyone!

Shared Tree

- Ideally, find a Steiner tree — minimum-weighted tree connecting only the multicast members

Finding Steiner Tree is NP hard

Alternatively, find a minimum-spanning tree — minimum-weighted tree connecting all nodes in the network

Finding a minimum spanning tree is much easier

Alternatively, find a minimum-spanning tree — minimum-weighted tree connecting all nodes in the network

Finding a minimum spanning tree is much easier. How?
Shared Tree

- Alternatively, find a minimum-spanning tree – minimum-weighted tree connecting all nodes in the network.
- Finding a minimum spanning tree is easier. How?
- Prune back to get multicast tree.

Multicast Service Model

- Receivers join a multicast group which is identified by a multicast address (e.g., G).
- Senders(s) send data to address G.
- Network routes data to each of the receivers.
- Note: multicast vs. broadcast
 - Broadcast: packets are delivered to all end-hosts in the network.
 - Multicast: packets are delivered only to end-hosts that are in (have joined) the multicast group.

Multicast and Layering

- Multicast can be implemented at different layers
 - Data link layer
 - e.g., Ethernet multicast
 - Network layer
 - e.g., IP multicast
 - Application layer
 - e.g., End system multicast
- Which layer is best?

Multicast Service Model (cont’d)

- Membership access control
 - Open group: anyone can join
 - Closed group: restrictions on joining
- Sender access control
 - Anyone in group can send to group
 - Restrictions on which host can send to group

Multicast Implementation Issues

- How are multicast packets addressed?
- How is join implemented?
- How is send implemented?
- How much state is kept and who keeps it?

Data Link Layer Multicast

- Recall: end-hosts in the same local area network (LAN) can hear from each other at the data link layer (e.g., Ethernet).
- Reserve some data link layer addresses for multicast.
- Join group at multicast address G.
 - Network interface card (NIC) normally only listens for packets sent to unicast address A and broadcast address B.
 - To join group G, NIC also listens for packets sent to multicast address G (NIC limits number of groups joined).
 - Implemented in hardware, thus efficient.
- Send to group G.
 - Packet is flooded on all LAN segments, like broadcast.
 - Can waste bandwidth, but LANs should not be very large.
- Only host NICs keep state about who has joined → scalable to large number of receivers, groups.
Problems with Data Link Layer Multicast

• Single data link technology
• Single LAN
 - limited to small number of hosts
 - limited to low diameter latency
 - essentially all the limitations of LANs compared to internetworks

Network Layer (IP) Multicast

• Overcomes limitations of data link layer multicast
• Performs inter-network multicast routing
 - relies on data link layer multicast for intra-network routing
• Portion of IP address space defined as multicast addresses
 - 2^28 addresses for entire Internet
• Open group membership
• Anyone can send to group
 - flexible, but leads to problems

IP Multicast Routing

• Intra-domain
 - Distance-vector multicast
 - Link-state multicast
• Inter-domain
 - Protocol Independent Multicast
 - Single Source Multicast

Distance Vector Multicast Routing Protocol (DVRMP)

• An elegant extension to DV routing
• Use shortest path DV routes to determine if link is on the source-rooted spanning tree
• Three steps in developing DVRMP
 - Reverse Path Flooding
 - Reverse Path Broadcasting
 - Truncated Reverse Path Broadcasting

Reverse Path Flooding (RPF)

• Extension to DV unicast routing
• Packet forwarding
 - If incoming link is shortest path to source
 - Send on all links except incoming
• Packets always take shortest path
 - assuming delay is symmetric
• Issues
 - Some links (LANs) may receive multiple copies
 - Every link receives each multicast packet, even if no interested hosts

Example

• Flooding can cause a given packet to be sent multiple times over the same link
• Solution: Reverse Path Broadcasting
Reverse Path Broadcasting (RPB)

- Chose parent of each link along reverse shortest path to source
- Only parent forward to a link (child link)
- Identify Child Links
 1. Routing updates identify parent
 2. Since distances are known, each router can easily figure out if it's the parent for a given link
 3. In case of tie, lower address wins

Don't Really Want to Flood!

- This is still a broadcast algorithm – the traffic goes everywhere
- Need to “Prune” the tree when there are subtrees with no group members
- Solution: Truncated Reverse Path Broadcasting

Pruning Details

- Prune (Source, Group) at leaf if no members
 - Send Non-Membership Report (NMR) up tree
- If all children of router R send NRM, prune (S,G)
 - Propagate prune for (S,G) to parent R
- On timeout:
 - Prune dropped
 - Flow is reinstated
 - Downstream routers re-prune
- Note: a soft-state approach

Truncated Reverse Path Broadcasting (TRPB)

- Extend DV/RPB to eliminate unneeded forwarding
- Identify leaves
 - Routers announce that a link is their next link to source S
 - Parent router can determine that it is not a leaf
- Explicit group joining on LAN
 - Members periodically (with random offset) multicast report locally
 - Hear an report, then suppress own
- Packet forwarding
 - If not a leaf router or have members
 - Out all links except incoming

Distance Vector Multicast Scaling

- State requirements:
 - O(Sources × Groups) active state
- How to get better scaling?
 - Hierarchical Multicast
 - Core-based Trees
Core Based Trees (CBT)

- Pick a “rendezvous point” for the group called the core.
 - Shared tree
- Unicast packet to core and bounce it back to multicast group
- Tree construction is receiver-based
 - Joins can be tunneled if required
 - Only nodes on One tree per group tree involved
- Reduce routing table state from $O(S \times G)$ to $O(G)$

Example

- Group members: M1, M2, M3
- M1 sends data

Disadvantages

- Sub-optimal delay
- Single point of failure
 - Core goes out and everything lost until error recovery elects a new core
- Small, local groups with non-local core
 - Need good core selection
 - Optimal choice (computing topological center) is NP hard

Problems with Network Layer Multicast (NLM)

- Scales poorly with number of groups
 - A router must maintain state for every group that traverses it
 - Many groups traverse core routers
- Supporting higher level functionality is difficult
 - NLM: best-effort multi-point delivery service
 - Reliability and congestion control for NLM complicated
- Deployment is difficult and slow
 - ISP’s reluctant to turn on NLM

Example

- Group members: M1, M2, M3
- M1 sends data

Disadvantages

- Sub-optimal delay
- Single point of failure
 - Core goes out and everything lost until error recovery elects a new core
- Small, local groups with non-local core
 - Need good core selection
 - Optimal choice (computing topological center) is NP hard

Problems with Network Layer Multicast (NLM)

- Scales poorly with number of groups
 - A router must maintain state for every group that traverses it
 - Many groups traverse core routers
- Supporting higher level functionality is difficult
 - NLM: best-effort multi-point delivery service
 - Reliability and congestion control for NLM complicated
- Deployment is difficult and slow
 - ISP’s reluctant to turn on NLM

NLM Reliability

- Assume reliability through retransmission
- Sender can not keep state about each receiver
 - E.g., what receivers have received
 - Number of receivers unknown and possibly very large
- Sender can not retransmit every lost packet
 - Even if only one receiver misses packet, sender must retransmit, lowering throughput
- N(ACK) implosion
 - Described next

(N)ACK Implosion

- (Positive) acknowledgements
 - Ack every n received packets
- What happens for multicast?
 - Negative acknowledgements
 - Only ask when data is lost
 - Assume packet 2 is lost
NACK Implosion

- When a packet is lost all receivers in the sub-tree originated at the link where the packet is lost send NACKs

Narada: End System Multicast

- Set up tree between hosts
- Small group sizes <= hundreds of nodes
- Hosts do the copying of packets
- Only require unicast from infrastructure
- Denial-of-service attacks on known groups
- Anyone can send to a group
- Details of multicast were very hard to get right
- Charging done at edge, but single packet from edge can explode into millions of packets within network

Barriers to Multicast

- Hard to change IP
 - Multicast means change to IP
 - Details of multicast were very hard to get right
- Not always consistent with ISP economic model
 - Charging done at edge, but single packet from edge can explode into millions of packets within network
- Troublesome security model
 - Anyone can send to a group
 - Denial-of-service attacks on known groups

Algorithmic Challenge

- Choosing replication/forwarding points among hosts
 - how do the hosts know about each other
 - and know which hosts should forward to other hosts

Application Layer Multicast (ALM)

- Let the hosts do all the “special” work
 - Only require unicast from infrastructure
- Basic idea:
 - Hosts do the copying of packets
 - Set up tree between hosts
- Example: Narada [Yang-hua et al, 2000]
 - Small group sizes <= hundreds of nodes
 - Typical application: chat

Advantages of ALM

- No need for changes to IP or routers
- No need for ISP cooperation
- End hosts can prevent other hosts from sending
- Easy to implement reliability
 - use hop-by-hop retransmissions
Performance Concerns

- **Stretch**
 - ratio of latency in the overlay to latency in the underlying network

- **Stress**
 - number of duplicate packets sent over the same physical link

Example

- Group members: M1, M2, M3

Single Sender Multicast

- Many problems with IP multicast disappear if each group is associated with a single source

- Hosts joining multicast group can send join messages to source
 - this sets up delivery tree
 - no worry about “root” being in wrong place

- This solves several problems:
 - better security and charging model
 - simple algorithm

What’s Wrong with SSM?

- **Multiple sources?**
 - can set up group per source, or...
 - Source can serve as relay for other senders

- **Algorithm?**
 - Trivial

- So, why isn’t SSM the answer?
 - Multicast no longer serves as “rendezvous”
 - Ok for “broadcast” apps, not good for “meeting” apps

What Do You Need to Know?

- DVRMP
- CBT
- SSM
- How they compare