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1. Problems from Peterson & Davie.

(a) Exercise 2.4(6 points)

To have at most one leading 0, the first two bits should be one of 01, 10, 11. Likewise, to
have at most one trailing 0, the last two bits should be one of 01, 10, 11. One bit in the middle
can be either 0 or 1. Therefore, any 5-bit sequence of the form(01|10|11)(0|1)(01|10|11) is
good.

There can be 3 possible cases for the first two bits. There can be 2 possible cases for the third
bit in the middle. Finally, there can be 3 possible cases for the last two bits. The total number of
possible sequences is3× 2× 3 = 18. All 16 4-bit sequences can be mapped.

(b) Exercise 2.6(6 points)

To distinguish sentinels, bit stuffing is used at the sender. Bit stuffing is inserting a 0 after 5
consecutive 1s. If when receiving we observe more than 5 consecutive 1s, this should be due to
the sentinel, which has the form 01111110. If instead we observe 01111111, then an error has
occurred.

After removing any 0 following 5 consecutive 1s from the sequence of bits we received over
the link, we obtain the following bit sequence:

1101011111101111101011111110
Since when unpacking the bit sequence we never encountered six 1s in a row, then it con-

tained neither the sentinel nor an errored version of the sentinel (01111111), so we do not see
evidence of any error.

(c) Exercise 2.21(6 points)

(a) (3 points)
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Let M be the set of all 8-bit messages with a single 1 bit.

M = {00000001, 00000010, 00000100, 00001000,

00010000, 00100000, 01000000, 10000000}

Any messagem1 ∈ M can be transmuted into any other messagem2 ∈ M(m1 6= m2)
with a 2-bit error. For example, assume 00000001 had bit flips at the last two bits, causing
it to become 00000010. To detect a 2-bit error, each message inM must have a different
error code. However, with 2 bits for error detection we can only express22 = 4 error codes.
Thererfore, there must existm1,m2 ∈ M,m1 6= m2, such thatm1 andm2 share the same
error code. Ifm1 is transmuted tom2 due to a 2-bit error, since their error codes are the
same, this 2-bit error cannot be detected.

Therefore, there is no error detection code of size 2 bits that can detect all 2-bit errors
for 8-bit messages.

(b) (3 points)
Let M be the set of all N-bit messages with a single 1 bit. There are N elements inM .

Any messagem1 ∈ M can be transmuted into any other messagem2 ∈ M(m1 6= m2)
with a 2-bit error. For example, assume 0000....0001 had bit flips at the last two bits, then
it becomes 0000....0010. Since this is a 2-bit error, any code that detects up to 8-bit errors
must detect it.

To detect it, however, each message inM needs to have a different error code (same as
in the previous problem). However, with 32 bits we can only generate232 different error
codes. Therefore, ifN > 232, there must existm1,m2 ∈ M(m1 6= m2) such thatm1 and
m2 share the same error code. Whenm1 is transmuted tom2 with a 2-bit error, since they
have the same error code, we cannot detect the 2-bit error.

This then shows that ifN = 232 + 1, there is no error detection code of size 32 bits
that can detect all errors altering up to 8 bits, since such codes cannot even detect all 2-bit
errors.

(d) Exercise 2.44(8 points)

(a) (2 points)
For the second backoff race, A picks eitherkA(2) to be either 0 or 1 with equal probability,
so 1/2 for each. B pickskB(2) from (0, 1, 2, 3) with probability 1/4 for each choice. A wins
the second backoff race ifkA(2) < kB(2).

P [A wins] = P [kA(2) < kB(2)]
= P [kA(2) = 0]× P [kB(2) > 0] + P [kA(2) = 1]× P [kB(2) > 1]

=
1
2
× 3

4
+

1
2
× 2

4

=
5
8
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(b) (2 points)
In this case, again A pickskA(3) to be either 0 or 1 with probability 1/2 each, while B picks
kB(3) from (0, 1, 2, 3, 4, 5, 6, 7), each with probability 1/8:

P [A wins] = P [kA(3) < kB(3)]
= P [kA(3) = 0]× P [kB(3) > 0] + P [kA(3) = 1]× P [kB(3) > 1]

=
1
2
× 7

8
+

1
2
× 6

8

=
13
16

(c) (2 points)
We assume that B will retry 16 times (the typical value), after which it gives up. Further-
more, when choosingk between0 and2n − 1 in theexponential backoff, n is capped at 10.
The probability that A wins all 13 remaining backoff races is:

P [A wins remaining races] =
16∏
i=4

P [A wins i|A wins i− 1]

Let kA(i) be the k value A picks forith backoff race. Given that A wins that race, (kA(i) <
kB(i)), the probability of A winning backoff race #(i + 1) is 1 if kA(i) + 1 < kB(i). (Here
we assume that the unit of waiting is equal to the transmission time of the frame. Other
interpretations are also possible.)
Otherwise (in casekA(i)+ 1 ≥ kB(i)), A and B collide when A is done with theith frame,
and the probability becomesP [kA(i + 1) < kB(i + 1)].

P [A wins i + 1|A wins i] = P [kA(i) + 1 < kB(i)] · 1
+P [kA(i) + 1 ≥ kB(i)] · P [kA(i + 1) < kB(i + 1)]

≥ P [kA(i) + 1 < kB(i)] · P [kA(i + 1) < kB(i + 1)]
+P [kA(i) + 1 ≥ kB(i)] · P [kA(i + 1) < kB(i + 1)]

= (P [kA(i) + 1 < kB(i)] + P [kA(i) + 1 ≥ kB(i)])
×P [kA(i + 1) < kB(i + 1)]

= P [kA(i + 1) < kB(i + 1)]

Since A won the previous backoff,kA(i) is either 0 or 1, each with probability 1/2. On the
other hand,kB(i) is in the range0 . . . 2i − 1, each with probability2−i, unlessi ≥ 10, in
which case the range is0 . . . 1023, each with probability 1

1024 .
For1 ≤ i ≤ 9,

P [kA(i) < kB(i)] = P [kA(i) = 0]× P [kB(i) > 0] + P [kA(i) = 1]× P [kB(i) > 1]
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=
1
2
× 2i − 1

2i
+

1
2
× 2i − 2

2i

=
2i+1 − 3

2i+1

For10 ≤ i ≤ 16,

P [kA(i) < kB(i)] = P [kA(i) = 0]× P [kB(i) > 0] + P [kA(i) = 1]× P [kB(i) > 1]

=
1
2
× 210 − 1

210
+

1
2
× 210 − 2

210

=
2045
2048

Then, the formula above becomes

P [A wins remaining races] =
16∏
i=4

P [A wins i|A wins i− 1]

>
16∏
i=4

P [kA(i) < kB(i)]

=
9∏

i=4

P [kA(i) < kB(i)] ·
16∏

i=10

P [kA(i) < kB(i)]

=
9∏

i=4

2i+1 − 3
2i+1

·
16∏

i=10

2045
2048

≈ 0.82

Therefore, 0.82 is an approximate lower bound (but it is not tight).

(d) (2 points)
B1 will be dropped, and B will try the next frameB2.

(e) Exercise 3.13(6 points)

The description of this problem and its companion (3.14) worked out in the back of the book
have ambiguities. Accordingly, the following two answers are both considered correct. The first
one reflects an interpretation “over which links will the given bridge not forward flooded traffic?”
while the second reflects an interpretation “for which links is the given bridge not selected as the
designated bridge?”.

The following ports are not selected by the spanning tree algorithm:
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Bridge Port
Bridge 1
Bridge 2 A
Bridge 3
Bridge 4
Bridge 5 B, F
Bridge 6 I
Bridge 7

Bridge Port
Bridge 1
Bridge 2 A,D
Bridge 3 E
Bridge 4 G
Bridge 5 B, F
Bridge 6 H, I
Bridge 7 C

(f) Exercise 4.13(6 points)

Until some host ARPs for the address shared by A and B, A’s existing connections will
proceed without any impairment. B will not even hear the traffic since packets will not be
destined for its MAC address, and thus B’s NIC will discard them at the link layer.

However, once a host ARPs for the address, then a race will occur in terms of which of A’s or
B’s replies winds up occupying the cache of the requestor (and perhaps the cache of others hosts
if the opportunistically listen in on ARP replies that they can hear). If B’s MAC address winds
up in the cache, then A’s existing connections will stall; in fact, if they are using TCP, then B’s
TCP stack will RST the connections as soon as it receives packets for them, because it has no
associated state.

With self-ARP, B can notice that A is already using the IP address. It can then notify its
user(s) of the problem and the need to change to a different address, and refrain from polluting
the ARP tables of others hosts and preventing them from communicating with A.

(g) Exercise 4.14(7.5 points)

(a) (2.5 points)
The biggest problem is that if D does not exist, the host will send an ARP request for each

packet; all but the first of these will be unnecessary, and will result in further unnecessary
work as other hosts reply.

In addition, if D does not exist then we will fill up queue space with packets destined to
it, with no way to reclaim this space.

(b) (2.5 points)
First, check whether an ARP is already pending for D, which can be done either by

inspecting the destinations of the queued packets or by maintaining an additional table that
lists pending ARPs.

Second, to recover queue space for packets sent to non-existing destinations, add a time-
out when waiting for an ARP response. If the timeout expires, indicating D does not exist,
remove any packets in the queue destined to D.

if (<Ethernet address for D is in ARP cache>)
<send P>

else
if (D not already present as destination of queued packets)
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<send ARP request to resolve D>
if (<timer is not running>)

<start timer>
<put P into a queue>

---------------------------------------------
on <timeout>

<remove packets in queue destined to D>

(c) (2.5 points)
Every time the host begins communicating with a new destination, it will suffer a timeout

delay (assuming its communication uses a reliable service such as TCP).
The one benefit is that we do not need to manage the additional queue of pending pack-

ets.

(h) Exercise 4.15(7.5 points)

(a) (2.5 points)
Information Distance to Reach Node

Stored at Node A B C D E F
A 0 ∞ 3 8 ∞ ∞
B ∞ 0 ∞ ∞ 2 ∞
C 3 ∞ 0 ∞ 1 6
D 8 ∞ ∞ 0 2 ∞
E ∞ 2 1 2 0 ∞
F ∞ ∞ 6 ∞ ∞ 0

(b) (2.5 points)
Information Distance to Reach Node

Stored at Node A B C D E F
A 0 ∞ 3 8 4 9
B ∞ 0 3 4 2 ∞
C 3 3 0 3 1 6
D 8 4 3 0 2 ∞
E 4 2 1 2 0 7
F 9 ∞ 6 ∞ 7 0

(c) (2.5 points)
Information Distance to Reach Node

Stored at Node A B C D E F
A 0 6 3 6 4 9
B 6 0 3 4 2 9
C 3 3 0 3 1 6
D 6 4 3 0 2 9
E 4 2 1 2 0 7
F 9 9 6 9 7 0
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(i) Exercise 4.17(6 points)

(Node, Cost, Predecessor) is used.
Step Confirmed Tentative

1 (D,0,-)
2 (D,0,-) (A,8,D)

(E,2,D)
3 (D,0,-) (A,8,D)

(E,2,D)
4 (D,0,-) (A,8,D)

(E,2,D) (B,4,E)
(C,3,E)

5 (D,0,-) (A,8,D)
(E,2,D) (B,4,E)
(C,3,E)

6 (D,0,-) (A,6,C)
(E,2,D) (B,4,E)
(C,3,E) (F,9,C)

7 (D,0,-) (A,6,C)
(E,2,D) (F,9,C)
(C,3,E)
(B,4,E)

8 (D,0,-) (F,9,C)
(E,2,D)
(C,3,E)
(B,4,E)
(A,6,C)

9 (D,0,-)
(E,2,D)
(C,3,E)
(B,4,E)
(A,6,C)
(F,9,C)

(j) Exercise 4.20(7.5 points)

Routing table before the C-E link fails:
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Node A

Node
NextHop
C D

B 6 12
C 3 11
D 6 8
E 4 10
F 9 17

Node B

Node
NextHop

E
A 6
C 3
D 4
E 2
F 9

Node C

Node
NextHop

A E F
A 3 5 15
B 9 3 15
D 9 3 15
E 7 1 13
F 12 8 6

Node D

Node
NextHop
A E

A 8 6
B 14 4
C 11 3
E 12 2
F 17 9

Node E

Node
NextHop

B C D
A 8 4 8
B 2 4 6
C 5 1 5
D 6 4 2
F 11 7 11

Node F

Node
NextHop

C
A 9
B 9
C 6
D 9
E 7

Advertised routing table:
Node A

Node Cost NextHop
B 6 C
C 3 C
D 6 C
E 4 C
F 9 C

Node B
Node Cost NextHop

A 6 E
C 3 E
D 4 E
E 2 E
F 9 E

Node C
Node Cost NextHop

A 3 A
B 3 E
D 3 E
E 1 E
F 6 F

Node D
Node Cost NextHop

A 6 E
B 4 E
C 3 E
E 2 E
F 9 E

Node E
Node Cost NextHop

A 4 C
B 2 B
C 1 C
D 2 D
F 7 C

Node F
Node Cost NextHop

A 9 C
B 9 C
C 6 C
D 9 C
E 7 C

Routing table after the C-E link fails:
Node C

Node
NextHop

A E F
A 3 ∞ 15
B 9 ∞ 15
D 9 ∞ 15
E 7 ∞ 13
F 12 ∞ 6

Node E

Node
NextHop

B C D
A 8 ∞ 8
B 2 ∞ 6
C 5 ∞ 5
D 6 ∞ 2
F 11 ∞ 11
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Advertised routing table:
Node C

Node Cost NextHop
A 3 A
B 9 A
D 9 A
E 7 A
F 6 F

Node E
Node Cost NextHop

A 8 B
B 2 B
C 5 B
D 2 D
F 11 B

(a) (2.5 points)
Routing table:

Node A

Node
NextHop
C D

B 12 12
C 3 11
D 12 8
E 10 10
F 9 17

Node B

Node
NextHop

E
A 10
C 7
D 4
E 2
F 13

Node D

Node
NextHop
A E

A 8 10
B 14 4
C 11 7
E 12 2
F 17 13

Node F

Node
NextHop

C
A 9
B 15
C 6
D 15
E 13

Advertised routing table:
Node A

Node Cost NextHop
B 12 C
C 3 C
D 8 D
E 10 C
F 9 C

Node B
Node Cost NextHop

A 10 E
C 7 E
D 4 E
E 2 E
F 13 E

Node D
Node Cost NextHop

A 8 A
B 4 E
C 7 E
E 2 E
F 13 E

Node F
Node Cost NextHop

A 9 C
B 15 C
C 6 C
D 15 C
E 13 C
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(b) (2.5 points)
Routing table:

Node A

Node
NextHop
C D

B 12 12
C 3 15
D 12 8
E 10 10
F 9 21

Node D

Node
NextHop
A E

A 8 10
B 20 4
C 11 7
E 18 2
F 17 13

Advertised routing table:
Node A

Node Cost NextHop
B 12 C
C 3 C
D 8 D
E 10 C
F 9 C

Node D
Node Cost NextHop

A 8 A
B 4 E
C 7 E
E 2 E
F 13 E

(c) (2.5 points)
Routing table:

Node C

Node
NextHop

A E F
A 3 ∞ 15
B 15 ∞ 15
D 11 ∞ 15
E 13 ∞ 13
F 12 ∞ 6

Advertised routing table:
Node C

Node Cost NextHop
A 3 A
B 15 A
D 11 A
E 13 A
F 6 F

(k) Exercise 4.31(8 points)
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(a) (2 points)
The path can be any route without loop, as long as policy does not prevent it. There can be
up to 3 routes:<Q,P> through link 1,<Q,P> through link 2, and<Q,R,P>.

(b) (2 points)
The provider of host A is P, and the provider of B is Q. Traffic from A to B will be routed
via the closest link to B’s provider (namely, Q), which is Link 1. In the same way, traffic
from B to A will travel via Link 2.

(c) (2 points)
In a selection policy, give a higher preference to a route with a shorter distance.

(d) (2 points)
In a selection policy, give a higher preference to a route whose next AS is the provider R
than a route whose next AS is the provider P.

2. (7.5 points)

(a) (2.5 points)

Total propagation delay is the sum of propogation time through the wire and delays in all re-
peaters.

(Propagation time) =
(Distance)

(Propagation Speed)

=
900m

2 · 108m/s
= 4.5µs

(Delay in Repeater) =
(Delay in bits)

(Transmission Rate)

=
20bits

10Mbps
= 2µs

Since there are 4 repeaters

(Propagation Delay) = (Propagation time) + 4× (Delay in Repeater)
= 4.5µs + 4× 2µs

= 12.5µs

(b) (2.5 points)

Propagation delay of12.5µs between A and B is smaller than the backoff interval of51.2µs
(= 512 bits/10 Mbps). With CSMA/CD, when the start of the frame from A arrives at B, B will
not send a packet. Therefore, A’s packet will be delivered to B without collision or retry. Then

(Latency) = (Propagation Delay) + (Transmit T ime)
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= 12.5µs +
(Size)

(Bandwidth)

= 12.5µs +
125 bytes
10 Mbps

= 12.5µs + 100µs

= 112.5µs

Therefore, A’s packet is completely delivered to be at a time112.5µs after it begins transmitting
it.

We could be more precise by computing the time since the start of the entire tranmission. To do
so, we include the time required for the first collision to be detected, which is 512 bit times, or
51.2µs. Thus, the packet is completely delivered164µs after A began, ignoring the inter-frame
delay.

(c) (2.5 points)

Total propagation delay is the sum of propagation time through the wire and delays in all bridges.
In each bridge, there is a store-and-forward delay, which is equal to the transmit time, and a 20-
bit processing delay.

(Propagation time) =
(Distance)

(Propagation Speed)

=
900m

2 · 108m/s
= 4.5µs

(Delay in Bridge) = (Store-and-forward Delay) + (Processing Delay)
= (Transmit T ime) + (Processing Delay)

=
(Size)

(Bandwidth)
+

(Delay in bits)
(Transmission Rate)

=
125 bytes
10 Mbps

+
20 bits

10 Mbps
= 100µs + 2µs

= 102µs

There are 4 bridges.

(Propagation Delay) = (Propagation time) + 4× (Delay in Bridge)
= 4.5µs + 4× 102µs

= 412.5µs

Total latency becomes

(Latency) = (Propagation Delay) + (Transmit T ime)
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= 412.5µs +
(Size)

(Bandwidth)

= 412.5µs +
125 bytes
10 Mbps

= 412.5µs + 100µs

= 512.5µs

Therefore, at timet = 512.5µs, A’s packet is completely delivered to B.

3. (10.5 points)

(a) (1.5 points)

Headers:Date, Server, Set-Cookie, x-amz-id-1, x-amz-id-2, Vary, Content-Type, Connec-
tion. If you fetched using HTTP 1.1, you also might have seenTransfer-Encoding and a bizarre
nnCoection.
Cookies set:skin, session-id, session-id-time, each with attributes ofpath, domain, expires.

(b) (1.5 points)

101,434 bytes

(c) (1.5 points)

Described in RFC 1945:

Date the date and time at which the message was originated

Server information about the software used by the origin server to handle the request

Content-Type the media type of theEntity Bodysent to the recipient

(d) (1.5 points)

Described in RFC 2616 and also in RFC 1945:Date, Server, Content-Type.

Described only in RFC 2616:

Transfer-Encoding specifies how the entity returned is encoded. For HTTP 1.1, the value we
observed aschunked, indicating the entity was returned in several pieces, each of which
starts with the size of the piece (expressed in hexadecimal).

Vary indicates the set ofrequest-headerfields that fully determines, while the response is fresh,
whether a cache is permitted to use the response to reply to a subsequent request without
revalidation. In this case, the server is indicating that the version of the page it returned was
determined by the setting ofAccept-EncodingandUser-Agent, so if the result is cached, it
should only be used from the cache if those fields have the same values as they did in this
request.

Connection specifies options that are desired for that particular connection

(e) (1.5 points)

Set-Cookie carries state information between participating origin servers and user agents. See
RFC 2109.
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x-amz-id-1, x-amz-id-2 Headers for Amazon’s internal use. See
http://developer.amazonwebservices.com/connect/thread.jspa?messageID=
46114

nnCoection Appears to be due to a weird hack in a hardware load-balancer. Seehttp://
www.nextthing.org/archives/2005/08/07/fun-with-http-headers

(f) (1.5 points)

All headers were found and are discussed above.

(g) (1.5 points)

When fetching using HTTP 1.1, the transfer is encoded usingchunking, as discussed above, and
there is the additional bizarrennCoectionheader.

Note, if you access the server manually using Telnet, then the following:

GET / HTTP/1.0
<<empty line>>

works fine, but:

GET / HTTP/1.1
<<empty line>

produces an error message:

400 Bad Request
Bad Request
Your browser sent a request that this server could not understand.

because with HTTP 1.1 you must include aHost header in your request. The following:

GET / HTTP/1.1
Host: www.amazon.com
<<empty line>

will work.

4. (7.5 points)

(a) (2.5 points)

A can eavesdrop on the first 2 frames sent from B to C, but not on any of the replies sent in the
other direction.

The switch starts with an empty forwarding table. When the first frame from B destined to C
arrives at the switch, the switch does not know to which interface C is connected. Therefore,
the switch floods the frame, and A can read a copy (assuming that A’s NIC is operating in
promiscuousmode).
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At that point, the switch learns to which interface B is connected. But when the second frame
from B arrives, the switch still does not know where to forward. The frame is flooded again, and
A hears the frame also.

After C receives two frames, it sends a single frame in response. This frame is destined to
B, which the switch already knows how to directly forward. Since the frame is not flooded,
A cannot eavesdrop on it. In addition, at this point the switch learns to which interface C is
connected, so A no longer sees transmissions destined for it, either.

(b) (2.5 points)

By continuously sending frames with different MAC addresses to the switch, A can evict entries
in the forwarding table of the switch. The switch will then lose information about which host is
connected to which interface, and will flood subsequent traffic destined for the evicted hosts.

To maximize the amount of traffic A eavesdrops, A needs to evict every new legitimate entry
entered into the switch’s forwarding table before the entry is used for forwarding. Doing so
requires A to send 10 frames with 10 different spoofed MAC addresses in between any time
when one of B or C transmits a frame, and when they next are the destination of a frame.

If the spacing between transmissions is large enough to always allow A to slip in these 10 frames,
then A can eavesdrop on the entire traffic. As B and C only send 15 frames in total each second,
this requires A to transmit 150 frames each second (though in bursts). (In fact, it can send
fewer, since it need only evict B’s entries just before C transmits to B, not after every one of B’s
transmissions.)

If, on the other hand, C responds quickly each time it receives a second frame from B, or if B
transmits its next frame very shortly after receiving a frame from C, then A might not be able
to flood the table quickly enough to force an eviction. In this case, it misses either C’s traffic to
B, or half of B’s traffic to C, depending on which of the two hosts transmits just after receiving
a frame from the other. As a result, A will see 10 out of 15 frames, or two-thirds of all of the
traffic.

(c) (2.5 points)

If A sends a frame using as its source MAC address the address belonging to some other host,
the switch will associate A with that MAC address rather than the proper host. The switch will
forward frames destined to that host to A, until the rightful host sends another frame.

Consider the first frame sent from B to C. It is flooded, so because of this A learns both B’s and
C’s MAC addresses.

A then spoofs a frame with a fake source of C’s MAC address. This means that B’s second packet
to C will go to A, rather than to C. A can simply discard this frame and any subsequent frames,
and no further progress will occur, since C only generates frames in response to receiving them
from B, and in this case it will never receive a second frame from B. (C received the first frame
because it was flooded.)

Thus, it takes just one spoofed frame, sent during the 100 msec between B’s first two frames.
Even if A starts the attack later, it can quickly and completely disrupt C’s ability to receive from
B using just one spoofed frame.
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