Goals for Today’s Class

• EE 122 overview
 – Goals of the course
 – Structure of the course
 – Instructor & TAs
 – Prereqs & assignments
 – Course grading
 – Academic policies

• What makes networking challenging
 – The fundamental issues we must grapple with to build a
global Internet

What You Learn in This Course

• Insight: key concepts in networking
 – Protocols
 – Layering
 – Resource allocation
 – Security
 – Naming

• Knowledge: how the Internet works
 – Internet architecture
 – IP protocol suite
 – Applications (Web, e-mail, P2P, …)

• Skill: network programming
 – Socket programming
 – Designing and implementing protocols

What This Course Is and Isn’t

• EE122 comes in two flavors:
 – Spring offering: taught by EE faculty
 – More emphasis on diverse link technologies, wireless & mobility,
 communication theory & simulation
 – Fall offering: taught by CS faculty
 – More emphasis on Internet technology, applications, practice &
 empiricism / hands-on
 – Differences aren’t huge, though

• My particular emphasis:
 – Today’s actual (messy) Internet
 – Not yesterday’s, and not much about tomorrow’s
 – Security perspectives

Structure of the Course (1st Half)

• Start at the top
 – Protocols: how to structure communication
 – Sockets: how applications view the Internet

• Then study the “narrow waist” of IP
 – IP best-effort packet-delivery service
 – IP addressing and packet forwarding

• And how to build on top of the narrow waist
 – Transport protocols (TCP, UDP)
 – Domain Name System (DNS)
 – Applications (Web, email, file transfer)

• Looking underneath IP
 – Link technologies (Ethernet, bridges, switches)

Structure of the Course (2nd Half)

• How to get the traffic from here to there …
 – Glue (ARP, DHCP, ICMP)
 – Routing (intradomain, interdomain)

• … in a way that’s both efficient and stable
 – How much data to keep in flight (the window)
 – Without clogging the network (congestion)
 – With some assurance (quality of service) … or not

• How to control network traffic …
 – Enforcing policy
 – Defending against attacks

• … and scale it to potentially huge structures
 – Peer-to-peer & overlays
Instructor

• Vern Paxson (vern@icsi.berkeley.edu)
 – Senior scientist at the International Computer Science Institute and also the Lawrence Berkeley National Lab
 – Research focuses on network security & network measurement
 – http://www.icir.org/vern/
 – Office hours W 2:30-3:30PM in 329 Soda
 • And by appointment at ICSI
 • http://www.icsi.berkeley.edu/where.html
 • This week only by appointment
 – Phone: 666-2882
 • Email works much better!
 • Hearing impaired: please be ready to repeat questions & comments!

TAs

• Dilip Anthony Joseph (dilip@eecs.berkeley.edu)
 – Office hours F 11-12 in 311 Soda
 • And by appointment
 – Section F 10-11 in 293 Cory

• Sukun Kim (binetude@eecs.berkeley.edu)
 – Office hours T 11-12 in 410 Soda
 • And by appointment
 – Section T 10-11 in 400 Cory

 • Co-teach 3rd section
 – W 12-1 in 293 Cory

Interact!

• Inevitably, you won’t understand something(s) … that’s my fault, but you need to help.
• Come to office hours, request an appointment, communicate by e-mail
 – We are here to help, including general advice!
 – TAs first line for help with programming problems
• Give us suggestions/complaints/feedback as early as you can
• What’s your background? Tell us at
 – http://tinyurl.com/fbc7u

Course Materials

• Textbooks
 • Note, we jump around in it a lot
 – Recommended & on reserve:
• Web site: http://inst.eecs.berkeley.edu/~ee122/
 – Updated frequently, including lecture slides (generally in advance)
• Mailing list: ee122@icsi.berkeley.edu
 – Sign up: http://mailman.icsi.berkeley.edu/mailman/listinfo/ee122

Class Workload

• Four homeworks spread over the semester
 – Strict due dates (no slip days!)
 – Deadlines are generally 3:50PM prior to lecture
• Three (mini-)projects
 – Simple “echo” server (socket programming)
 – Simple Web crawler
 – “Chat” tool
 • 1st phase: design protocol
 • 2nd phase: implement to reference protocol design
 • C (or C++) required
 – Deadlines 11PM
• Exams
 – Midterm: Monday October 16
 – Final: Saturday Dec 16
 – Closed book, open crib sheet

Prerequisites

• CS 61A, 61B
 – Programming, data structures, software engineering
 – Knowledge of C or C++
• Math 53 or 54
 – In fact, we’ll be relatively light on math, though your algebra should be very solid, you should know basic probability, and you’ll need to be comfortable with thinking abstractly
• Background material will not be covered in lecture. TAs will spend very little time reviewing material not specific to networking
Grading

- Course graded to mean of B
 - Relatively easy to get a B, harder to get an A or a C
 - 10% A, 15% A-, 15% B+, 20% B, 15% B-, 15% C+, 10% C
 - A+ reserved for superstars (1 or 2 per class)
 - Mean can shift up for an excellent class

Projects 40% (10+10+20)
Midterm exam 20%
Final exam 20%

No Cheating

- Cheating means not doing the assignment by yourself.
- Fine to talk with other students about assignments outside of class.
- No copying, no Google, etc.
- If you’re unsure, then ask.
- We will do automated similarity detection on assignments.

Networking: Actually Not Boring

5 Minute Break

Questions Before We Proceed?

Why Networking Is Challenging

- Fundamental challenge: the speed of light
- Question: how long does it take light to travel from Berkeley to New York?
- Answer:
 - Distance Berkeley → New York: 4,125 km (great circle)
 - Traveling 300,000 km/s: 13.75 msec

Fundamental Challenge: Speed of Light

- Question: how long does it take an Internet "packet" to travel from Berkeley to New York?
- Answer:
 - For sure >= 13.75 msec
 - Depends on:
 - The route the packet takes (could be circuitous!)
 - The propagation speed of the links the packet traverses
 - E.g., in optical fiber light propagates at about 2/3 C
 - The transmission rate (bandwidth) of the links (bits/sec)
 - and thus the size of the packet
 - Number of hops traversed (store-and-forward delay)
 - The "competition" for bandwidth the packet encounters (congestion). It may have to sit & wait in router queues.
 - In practice this boils down to:
 - >= 40 msec
Fundamental Challenge: Speed of Light

• Question: how many cycles does your PC execute before it can possibly get a reply to a message it sent to a New York web server?

• Answer:
 – Round trip takes >= 80 msec
 – PC runs at (say) 3 GHz
 – 3,000,000,000 cycles/sec * 0.08 sec = 240,000,000 cycles

 = An Eon
 – Communication feedback is always dated
 – Communication fundamentally asynchronous

Why Networking Is Challenging, con’t

• Fundamental challenge: we are cheapskates who want it all

• Cheapskates: computer science is all about cost
 – Or, put another way: efficiency
 – If cost didn’t matter, networking would be oh-so-easy!
 • E.g., string wires between each pair of computers in the world
 • Though, um, pesky speed-of-light issues remain …

• Want it all: goal of the Internet is to interconnect
 – A huge number of devices
 – Using all sorts of link technologies
 – Across a very wide range of conditions

• So need to be vast in scope yet affordable

Examples of Network Components

<table>
<thead>
<tr>
<th>Links</th>
<th>Interfaces</th>
<th>Switches/routers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibers</td>
<td>Ethernet card</td>
<td>Large router</td>
</tr>
<tr>
<td>Coaxial Cable</td>
<td>Wireless card</td>
<td>Telephone switch</td>
</tr>
</tbody>
</table>

Why Networking Is Challenging, con’t

• Fundamental challenge: components fail
 – Network communication involves a chain of interfaces, links, routers and switches …

• Question: suppose a communication involves 50 components which work correctly (independently) 99% of the time. What’s the likelihood the communication fails at a given point of time?
 – Answer: success requires that they all function, so failure probability = 1 - 0.99^{50} = 39.5%.

• So we have a lot of components (we want it all), which tend to fail (cheapskates) …
 – … and we don’t find out for an eon (speed-of-light)
Why Networking Is Challenging, con’t

• Challenge: enormous dynamic range
 (because we want it all)
 – Round-trip times (latency) vary from 10 usec’s to sec’s (10^5)
 – Data rates (bandwidth) vary from kbps to 10 Gbps (10^7)
 – Queuing delays inside the network vary from 0 to sec’s
 – Packet loss varies from 0 to 90+%
 – End system (host) capabilities vary from cell phones to supercomputer clusters
 – Application needs vary enormously: size of transfers, bidirectionality, need for reliability, tolerance of jitter
• Related challenge: very often, there is no such thing as “typical”. Beware of your “mental models”!
 – Must think in terms of design ranges, not points
 – Mechanisms need to be adaptive

Why Networking Is Challenging, con’t

• Challenge: different parties must work together
• Comes about due to network’s scope
 – Once larger than a single institution, you have multiple parties with different agendas who still must agree how to divide the task between them (“coopetition”)
• Working together requires:
 – Protocols (defining who does what)
 • These generally need to be standardized
 – Agreements regarding how different types of activity are treated (policy)
• Different parties very well might try to “game” the network’s mechanisms to their advantage

Why Networking Is Challenging, con’t

• Challenge: incessant rapid growth
• Internet has sustained energetic, compound growth for more than two decades
 – Utility of the network scales with its size
 → Fuels exponential growth
 – Currently about half a billion hosts
• With growth comes
 – Rapid evolution & innovation ...
 – ... among both the networking technology and (especially) the applications it supports.
• Adds another dimension of dynamic range ...
 – ... and quite a number of ad hoc artifacts
 – “Success disaster”
Why Crooks Matter for Networking

- They (and other attackers) seek ways to misuse the network towards their gain
 - Carefully crafted "bogus" traffic to manipulate the network’s operation
 - E.g., altering Internet routing or name lookups
 - Torrents of bogus (or even legitimate) traffic to overwhelm a service (denial-of-service)
 - E.g., as an extortion threat against an ecommerce site
 - Passively recording network traffic in transit (sniffing)
 - E.g., to steal information or aid in crafting manipulative traffic
 - Exploit flaws in clients and servers using the network to trick into executing the attacker’s code (compromise)
- They do all this energetically because there is significant $$$ to be made

Summary

- A number of deep challenges
 - Speed-of-light
 - Desiring a pervasive global network
 - Need for it to work efficiently/cheaply
 - Failure of components
 - Enormous dynamic range ("no such thing as typical")
 - Disparate parties must work together
 - Rapid growth/evolution
 - Crooks & other bad guys
- Next lecture: types of networks, protocols
 - Read through 1.2 of the Peterson/Davie book
 - Take the survey (http://tinyurl.com/fbc7u)
 - Dust off your C/C++ programming skills if need be