Announcements

• Homework #2 out, due Oct. 11
 – Your solutions to be submitted using the standard EECS Unix interface, not via email
• Lectures 8 & 9 swapped: we’ll now first do Email & FTP (as well as finishing DNS) before The Web

Goals of Today’s Lecture

• IP addresses
 – Dotted-quad notation
 – IP prefixes for aggregation
• Address allocation
 – Classful addresses
 – Classless InterDomain Routing (CIDR)
 – Growth in the number of prefixes over time
• Packet forwarding
 – Forwarding tables
 – Longest-prefix match forwarding
 – Where forwarding tables come from

Designing IP’s Addresses

• Question #1: what should an address be associated with?
 – E.g., a telephone number is associated not with a person but with a handset
• Question #2: what structure should addresses have? What are the implications of different types of structure?
• Question #3: who determines the particular addresses used in the global Internet? What are the implications of how this is done?

IP Addresses (IPv4)

• A unique 32-bit number
• Identifies an interface (on a host, on a router, …)
• Represented in dotted-quad notation. E.g., 12.34.158.5:

 12 34 158 5

 0000110 00110 10011110 00000101

Grouping Related Hosts

• The Internet is an “inter-network”
 – Used to connect networks together, not hosts
 – Needs a way to address a network (i.e., group of hosts)
Scalability Challenge

- Suppose hosts had arbitrary addresses
 - Then every router would need a lot of information
 - ...to know how to direct packets toward the host

Hierarchical Addressing in U.S. Mail

- Addressing in the U.S. mail
 - Zip code: 94704
 - Street: Center Street
 - Building on street: 1947
 - Location in building: Suite 600
 - Name of occupant: Vern Paxson

- Forwarding the U.S. mail
 - Deliver letter to the post office in the zip code
 - Assign letter to mailman covering the street
 - Drop letter into mailbox for the building/room
 - Give letter to the appropriate person

Hierarchical Addressing: IP Prefixes

- Divided into network & host portions (left and right)
- 12.34.158.0/24 is a 24-bit prefix with 2^8 addresses
 - Terminology: “Slash 24”

IP Address and a 24-bit Subnet Mask

<table>
<thead>
<tr>
<th>Address</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.34.158.5</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>12.34.157.5</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>

Scalability Improved

- Number related hosts from a common subnet
 - 1.2.3.0/24 on the left LAN
 - 5.6.7.0/24 on the right LAN

Easy to Add New Hosts

- No need to update the routers
 - E.g., adding a new host 5.6.7.213 on the right
 - Doesn’t require adding a new forwarding entry
Classful Addressing

- Originally, only fixed allocation sizes
 - Class A: 0* (first quad ranges from 0-127)
 - Very large /8 blocks (e.g., MIT has 18.0.0.0/8)
 - Class B: 10* (first quad 128-191)
 - Large /16 blocks (e.g., UCB has 128.32.0.0/16)
 - Class C: 110* (first quad 192-223)
 - Small /24 blocks (e.g., ICIR has 192.150.187.0/24)
 - Class D: 1110*
 - Multicast groups
 - Class E: 11110*
 - Reserved for future use

- This is why we use dotted-quad notation
- What problems can classful addressing lead to?
 - Only comes in 3 sizes
 - Routers can end up knowing about a lot of class C’s

Classless Inter-Domain Routing (CIDR)

Use two 32-bit numbers to represent a network.
Network number = IP address + Mask

IP Address : 12.4.0.0 IP Mask: 255.254.0.0

<table>
<thead>
<tr>
<th>Address</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001100</td>
<td>11111111</td>
</tr>
<tr>
<td>00001000</td>
<td>11111111</td>
</tr>
<tr>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>00000000</td>
<td>00000000</td>
</tr>
</tbody>
</table>

Written as 12.4.0.0/15

CIDR: Hierarchical Address Allocation

- Prefixes are key to Internet scalability
 - Addresses allocated in contiguous chunks (prefixes)
 - Routing protocols and packet forwarding based on prefixes

Scalability: Address Aggregation

Routers in the rest of the Internet just need to know how to reach 201.10.0.0/21. The provider can direct the IP packets to the appropriate customer.

CIDR Deployed (1994-1996): Much Flatter

But, Aggregation Not Always Possible

Good use of aggregation, and peer pressure in CIDR report*

But, Aggregation Not Always Possible

But, Aggregation Not Always Possible

Multihomed customer with 201.10.6.0/23 has two providers. Other parts of the Internet need to know how to reach these destinations through both providers.

Internet boom, increased multi-homing. What next?

Long-Term View (1989-2005): Post-Boom

5 Minute Break

Questions Before We Proceed?

Scalability Through Non-Uniform Hierarchy

- Hierarchical addressing
 - Critical for scalable system
 - Don’t require everyone to know everyone else
 - Reduces amount of updating when something changes

- Non-uniform hierarchy
 - Useful for heterogeneous networks of different sizes
 - Initial class-based addressing was far too coarse
 - Classless InterDomain Routing (CIDR) gains much more flexibility
Address Allocation

Obtaining a Block of Addresses
• Separation of control
 – Prefix: assigned to an institution
 – Addresses: assigned by the institution to their nodes
• Who assigns prefixes?
 – Internet Corporation for Assigned Names and Numbers
 • Allocates large address blocks to Regional Internet Registries
 • ICANN is politically charged
 – Regional Internet Registries (RIRs)
 • E.g., ARIN (American Registry for Internet Numbers)
 • Allocates address blocks within their regions
 • Allocated to Internet Service Providers and large institutions
 – Internet Service Providers (ISPs)
 • Allocate address blocks to their customers (could be recursive)

Figuring Out Who Owns an Address
• Address registries
 – Public record of address allocations
 – Internet Service Providers (ISPs) should update when giving addresses to customers
 – However, records are notoriously out-of-date
• Ways to query
 – UNIX: "whois -h whois.arin.net 169.229.60.27"
 – http://www.arin.net/whois/
 – ...

Example Output for 169.229.60.27
University of California, Office of the President UCNET-BLK (NET-169-228-0-0-1)
 169.228.0.0 - 169.233.255.255
University of California at Berkeley ISTDATA (NET-169-229-0-0-1)
 169.229.0.0 - 169.229.255.255

Example Output for ISTDATA
OrgName: University of California at Berkeley
OrgID: UCAB-1
Address: IST Communication and Network Services
 Address: ATTN Network Services Group
 Address: 2484 Shattuck Ave, #1640
 City: Berkeley
 StateProv: CA
 PostalCode: 94720-1640
Country: US
NetRange: 169.229.0.0 - 169.229.255.255
CIDR: 169.229.0.0/16
NetName: ISTDATA
NetHandle: NET-169-229-0-0-1
Parent: NET-169-228-0-0-1
NetType: Reassigned

Example Output for ISTDATA, con’t
NameServer: ADNS1.BERKELEY.EDU
NameServer: ADNS2.BERKELEY.EDU
NameServer: UCB-NS.NYU.EDU
Comment: DMCA Designated Agent is Jacqueline Craig <policy@uclink.berkeley.edu>
RegDate: 1996-05-01
Updated: 2006-09-13
OrgTechHandle: UCB-NOC-ARIN
OrgTechName: IST Communication and Network Services
OrgTechPhone: +1-510-643-3267
OrgTechEmail: noc@nak.berkeley.edu
Are 32-bit Addresses Enough?

- Not all that many unique addresses
 - \(2^{32} = 4,294,967,296\) (just over four billion)
 - Plus, some (many) reserved for special purposes
 - And, addresses are allocated in larger blocks
- And, many devices need IP addresses
 - Computers, PDAs, routers, tanks, toasters, ...
- Long-term solution (perhaps): larger address space
 - IPv6 has 128-bit addresses \((2^{128} = 3.403 \times 10^{38})\)
- Short-term solutions: limping along with IPv4
 - Private addresses
 - Network address translation (NAT)
 - Dynamically-assigned addresses (DHCP)

Hard Policy Questions

- How much address space per geographic region?
 - Equal amount per country?
 - Proportional to the population?
 - What about addresses already allocated?
- Address space portability?
 - Keep your address block when you change providers?
 - Pro: avoid having to renumber your equipment
 - Con: reduces the effectiveness of address aggregation
- Keeping the address registries up to date?
 - What about mergers and acquisitions?
 - Delegation of address blocks to customers?
 - As a result, the registries are often out of date

Packet Forwarding

- Each router has a forwarding table
 - Maps destination addresses...
 - ... to outgoing interfaces
- Upon receiving a packet
 - Inspect the destination IP address in the header
 - Index into the table
 - Determine the outgoing interface
 - Forward the packet out that interface
- Then, the next router in the path repeats
 - And the packet travels along the path to the destination

Separate Table Entries Per Address

- If a router had a forwarding entry per IP address
 - Match destination address of incoming packet
 - ... to the forwarding-table entry
 - ... to determine the outgoing interface

Separate Entry Per 24-bit Prefix

- If the router had an entry per 24-bit prefix
 - Look only at the top 24 bits of the destination address
 - Index into the table to determine the next-hop interface
 - Could also do this based on class (A/B/C/...)

Forwarding table
CIDR Makes Packet Forwarding Harder

- Router can no longer determine network prefix just by inspecting the address
- Forwarding table may have multiple matches
 - E.g., table entries for 201.10.0.0/21 and 201.10.6.0/23
 - The IP address 201.10.6.17 would match both!

Longest-Prefix-Match Forwarding

- Router needs to identify longest-matching prefix

Simple Algorithms Are Too Slow

- Scan the forwarding table one entry at a time
 - See if the destination matches the entry
 - If so, check the size of the mask for the prefix
 - Keep track of the entry with longest-matching prefix
- Overhead is linear in size of the forwarding table
 - Today, that means 150,000-200,000 entries!
 - And, the router may have just a few nanoseconds...
 - ... before the next packet is arriving
- Need greater efficiency to keep up with line rate
 - Better algorithms
 - Hardware implementations

Patricia Tree

- Store the prefixes as a tree
 - One bit for each level of the tree
 - Some nodes correspond to valid prefixes
 - ... which have next-hop interfaces in a table
- When a packet arrives
 - Traverse the tree based on the destination address
 - Stop upon reaching the longest matching prefix

Even Faster Lookups

- Patricia tree is faster than linear scan
 - Proportional to number of bits in the address
- Patricia tree can be made faster
 - Can make a k-ary tree
 - E.g., 4-ary tree with four children (00, 01, 10, and 11)
 - Faster lookup, though requires more space
- Can use special hardware
 - Content Addressable Memories (CAMs)
 - Allows look-ups on a key rather than flat address
- Huge innovations in the mid-to-late 1990s
 - After CIDR was introduced (in 1994)
 - ... and longest-prefix match was a major bottleneck

Where do Forwarding Tables Come From?

- Routers have forwarding tables
 - Map prefix to outgoing link(s)
- Entries can be statically configured
 - E.g., “map 12.34.158.0/24 to Serial0/0.1”
- But, this doesn’t adapt
 - To failures
 - To new equipment
 - To the need to balance load
- That is where other technologies come in...
 - Routing protocols, DHCP and ARP (later in course)
How Does Sending End Host Forward?

- End host with single network interface
 - PC with an Ethernet link
 - Laptop with (just) a wireless link
- Don’t need to run a routing protocol
 - Packets to the host itself (e.g., 1.2.3.4/32)
 • Delivered locally
 - Packets to other hosts on the LAN (e.g., 1.2.3.0/24)
 • Sent out the interface with LAN address (ARP)
 - Packets to external hosts (e.g., 0.0.0.0/0)
 • Sent out interface to local gateway
- How this information is learned
 - Static setting of address, subnet mask, and gateway
 - Dynamic Host Configuration Protocol (DHCP)

What About Reaching the End Hosts?

- How does the last router reach the destination?

 - Each interface has a persistent, global identifier
 - MAC address (Media Access Control)
 - Programmed into adaptor (ROM/EEPROM)
 - Usually flat address structure (i.e., no hierarchy)
 - Constructing an address resolution table
 - Mapping MAC address to/from IP address
 - Address Resolution Protocol (ARP)

Summary

- IP address
 - A 32-bit number identifying an interface
 - Allocated in prefixes
 - Non-uniform hierarchy for scalability and flexibility
 - Packet forwarding
 - Based on IP prefixes
 - Longest-prefix-match forwarding
 - Issues to be covered later
 - Populating the forwarding table (routing)
 - How hosts get their addresses (DHCP)
 - How to map from an IP address to a link address (ARP)

Next Lecture

- Transport Protocols & DNS
- Read P&D: 2.5, 5.1, 9.1