Ethernet: Links, Hubs, Switches

EE 122: Intro to Communication Networks
Fall 2006 (MW 4-5:30 in Donner 155)
Vern Paxson
TAs: Dilip Antony Joseph and Sukun Kim
http://inst.eecs.berkeley.edu/~ee122/
Materials with thanks to Jennifer Rexford, Ion Stoica, and colleagues at Princeton and UC Berkeley

Announcements

- Office hours (329 Soda)
 - Regular slot moving to Weds 3-4PM (half hour later)
 - Extra office hours: Monday Oct 16 1:30-3:30PM
 - Also by appointment, but not this Thursday/Friday

Goals of Today’s Lecture

- Ethernet: single segment
 - Carrier sense, collision detection, and random access
 - Frame structure
- Ethernet: spanning multiple segments
 - Repeaters and hubs
 - Bridges and switches
 - Cut-through switching
 - Self-learning (plug-and-play)
 - Spanning trees
 - Virtual LANs (VLANs)
- The spectrum of interconnections
 - Hubs vs. switches vs. routers

Ethernet: CSMA/CD Protocol

- Carrier sense: wait for link to be idle
- Collision detection: listen while transmitting
 - No collision: transmission is complete
 - Collision: abort transmission & send jam signal
- Random access: exponential back-off
 - After collision, wait a random time before trying again
 - After mth collision, choose K randomly from {0, …, 2m-1}
 - … and wait for K*512 bit times before trying again
- The wired LAN technology
 - Hugely successful: 3/10/100/1000/10000 Mbps

CSMA/CD Collision Detection

- Latency depends on physical length of link
 - Time to propagate a packet from one end to the other
- Suppose A sends a packet at time t
 - And B sees an idle line at a time just before t+d
 - … so B happily starts transmitting a packet
- B detects a collision, and sends jamming signal
 - But A can’t see collision until t+2d

Limitations on Ethernet Length

- Latency depends on physical length of link
 - Time to propagate a packet from one end to the other
- Suppose A sends a packet at time t
 - And B sees an idle line at a time just before t+d
 - … so B happily starts transmitting a packet
- B detects a collision, and sends jamming signal
 - But A can’t see collision until t+2d
Limitations on Ethernet Length

- A needs to wait for time $2d$ to detect collision
 - So, A should keep transmitting during this period
 - ... and keep an eye out for a possible collision
- Imposes restrictions on Ethernet. For 10 Mbps:
 - Maximum length of the wire: 2,500 meters
 - Minimum length of the packet: 512 bits (64 bytes)
 - $512 \text{ bits} = 51.2 \mu\text{sec}$ (at 10 Mbit/sec)
 - For light in vacuum, $51.2 \mu\text{sec} \approx 15,000$ meters

Imposes restrictions on Ethernet. For 10 Mbps:
- Maximum length of the wire: 2,500 meters
- Minimum length of the packet: 512 bits (64 bytes)
- $512 \text{ bits} = 51.2 \mu\text{sec}$ (at 10 Mbit/sec)
- For light in vacuum, $51.2 \mu\text{sec} \approx 15,000$ meters
- vs. $5,000$ meters "round trip" to wait for collision

Ethernet Frame Structure

- Sending adapter encapsulates packet in frame
 - Preamble: synchronization
 - Seven bytes with pattern 10101010, followed by one byte with pattern 10101011
 - Used to synchronize receiver & sender clock rates
 - Type: indicates the higher layer protocol
 - Usually IP (but also Novell IPX, AppleTalk, …)
 - CRC: cyclic redundancy check
 - Receiver checks & simply drops frames with errors

Ethernet Frame Structure (Continued)

- Addresses: 48-bit source and destination MAC addresses
 - Receiver’s adaptor passes frame to network-level protocol
 - If destination address matches the adaptor’s
 - Or the destination address is the broadcast address (ff:ff:ff:ff:ff:ff)
 - Or the destination address is a multicast group receiver belongs to
 - Or the adaptor is in promiscuous mode
 - Addresses are globally unique
 - Assigned by NIC vendors (top three octets specify vendor)
 - During any given week, > 500 vendor codes seen at LBNL
- Data:
 - Maximum: 1,500 bytes
 - Minimum: 46 bytes (+14 bytes header + 4 byte trailer = 512 bits)

Unreliable, Connectionless Service

- Connectionless
 - No handshaking between sending and receiving adapter
- Unreliable
 - Receiving adapter doesn’t send ACKs or NACKs
 - Packets passed to network layer can have gaps
 - Gaps will be filled if application is using TCP
 - Otherwise, application will see the gaps

Benefits of Ethernet

- Easy to administer and maintain
- Inexpensive
- Increasingly higher speed
- Evolved from shared media to switches
 - Changes everything except the frame format
 - A good general lesson for evolving the Internet:
 - The right interface (service model) can often accommodate unanticipated changes
 - In fact, Ethernet framing used for wildly different technologies, e.g., 802.11 wireless

Shuttling Data at Different Layers

- Different devices switch different things
 - Physical layer: electrical signals (repeaters and hubs)
 - Link layer: frames (bridges and switches)
 - Network layer: packets (routers)
Physical Layer: Repeaters

- Distance limitation in local-area networks
 - Electrical signal becomes weaker as it travels
 - Imposes a limit on the length of a LAN
 - In addition to limit imposed by collision detection
- Repeaters join LANs together
 - Analog electronic device
 - Continuously monitors electrical signals on each LAN
 - Transmits an amplified copy

Physical Layer: Hubs

- Joins multiple input lines electrically
 - Do not necessarily amplify the signal
- Very similar to repeaters
 - Also operates at the physical layer

Limitations of Repeaters and Hubs

- One large collision domain
 - Every bit is sent everywhere
 - So, aggregate throughput is limited
 - E.g., three departments each get 10 Mbps independently
 - ... and then if connect via a hub must share 10 Mbps
- Cannot support multiple LAN technologies
 - Repeaters/hubs do not buffer or interpret frames
 - So, can’t interconnect between different rates or formats
 - E.g., no mixing 10 Mbps Ethernet & 100 Mbps Ethernet
- Limitations on maximum nodes and distances
 - Does not circumvent limitations of shared media
 - E.g., still cannot go beyond 2500 meters on Ethernet

Link Layer: Bridges

- Connects two or more LANs at the link layer
 - Extracts destination address from the frame
 - Looks up the destination in a table
 - Forwards the frame to the appropriate LAN segment
- Each segment is its own collision domain

Link Layer: Switches

- Typically connects individual computers
 - Essentially the same as a bridge
 - ... though connecting hosts, not LANs
 - In a point-to-point fashion
- Like bridges, support concurrent communication
 - Host A can talk to C, while B talks to D

Dedicated Access and Full Duplex

- Dedicated access
 - Host has direct connection to the switch
 - ... rather than a shared LAN connection
- Full duplex
 - Each connection can send in both directions
 - At the same time (otherwise, "half duplex")
 - Host sending to switch, and host receiving from switch
- Completely avoids collisions
 - Each connection is a bidirectional point-to-point link
 - No need for carrier sense, collision detection, and so on
Bridges/Switches: Traffic Isolation

- Breaks subnet into LAN segments
- Filters packets
 - Frame only forwarded to the necessary segments
 - Segments become separate collision domains

Advantages Over Hubs/Repeaters

- Only forwards frames as needed
 - Filters frames to avoid unnecessary load on segments
 - Sends frames only to segments that need to see them
- Extends the geographic span of the network
 - Separate collision domains allow longer distances
- Improves privacy by limiting scope of frames
 - Hosts can “snoop” the traffic traversing their segment
 - … but not all the rest of the traffic
- If needed, applies carrier sense & collision detection
 - Does not transmit when the link is busy
 - Applies exponential back-off after a collision
- Joins segments using different technologies

Disadvantages Over Hubs/Repeaters

- Delay in forwarding frames
 - Bridge/switch must receive and parse the frame
 - … and perform a look-up to decide where to forward
 - Introduces store-and-forward delay
 - Solution: cut-through switching
- Need to learn where to forward frames
 - Bridge/switch needs to construct a forwarding table
 - Ideally, without intervention from network administrators
 - Solution: self-learning
- Higher cost
 - More complicated devices that cost more money

Cut-Through Switching

- Buffering a frame takes time
 - If \(L \) is length of the frame, \(R \) is the transmission rate …
 - … then receiving the frame takes \(\frac{L}{R} \) time units
 - When will this be significant?
- Cut-Through: Begin sending as soon as possible
 - Inspect frame header & look-up destination
 - If outgoing link idle, start forwarding
 - Can transmit head of packet while still receiving tail

Motivation For Self Learning

- Large benefit if switch/bridge forward frames only on segments that need them
 - Allows concurrent use of other links
- Switch table
 - Maps destination MAC address to outgoing interface
 - Goal: construct the switch table automatically
Self Learning: Building the Table

- When a frame arrives
 - Inspect source MAC address
 - Associate address with the incoming interface
 - Store mapping in the switch table
 - Use time-to-live field to eventually forget the mapping
 - Soft state

Switch just learned how to reach A.

Self Learning: Handling Misses

- When frame arrives with unfamiliar destination
 - Forward the frame out all of the interfaces
 - ... except for the one where the frame arrived
 - Hopefully, this case won’t happen very often

When in doubt, shout!

Switch Filtering/Forwarding

When switch receives a frame:
index the switch table using MAC dest address
if entry found for destination {
 if dest on segment from which frame arrived then drop frame
 else forward frame on interface indicated
} else flood

Problems? forward on all but the interface on which the frame arrived

Flooding Can Lead to Loops

- Switches sometimes need to broadcast frames
 - Upon receiving a frame with an unfamiliar destination
 - Upon receiving a frame sent to the broadcast address
 - Implemented by flooding
- Flooding can lead to forwarding loops
 - E.g., if the network contains a cycle of switches
 - Either accidentally, or by design for higher reliability

Solution: Spanning Trees

- Ensure the forwarding topology has no loops
 - Avoid using some of the links when flooding
 - ... to prevent loop from forming
- Spanning tree
 - Sub-graph that covers all vertices but contains no cycles
 - Links not in the spanning tree do not forward frames

Constructing a Spanning Tree

- Need a distributed algorithm
 - Switches cooperate to build the spanning tree
 - ... and adapt automatically when failures occur
- Key ingredients of the algorithm
 - Switches need to elect a root
 - The switch w/ smallest identifier (MAC addr)
 - Each switch determines if its interface is on the shortest path from the root
 - Excludes it from the tree if not
 - Messages (Y, d, X)
 - From node X
 - Proposing Y as the root
 - And the distance is d
Steps in Spanning Tree Algorithm

- Initially, each switch proposes itself as the root
 - Switch sends a message out every interface
 - ... proposing itself as the root with distance 0
 - Example: switch X announces (X, 0, X)
- Switches update their view of the root
 - Upon receiving message (Y, d, Z) from Z, check Y’s id
 - If new id smaller, start viewing that switch as root
- Switches compute their distance from the root
 - Add 1 to the distance received from a neighbor
 - Identify interfaces not on shortest path to the root
 - ... and exclude them from the spanning tree
- If root or shortest distance to it changed, flood updated message (Y, d+1, X)

Example From Switch #4’s Viewpoint

- Switch #4 thinks it is the root
 - Sends (4, 0, 4) message to 2 and 7
- Then, switch #4 hears from #2
 - Receives (2, 0, 2) message from 2
 - ... and thinks that #2 is the root
 - And realizes it is just one hop away
- Then, switch #4 hears from #7
 - Receives (2, 1, 7) from 7
 - And realizes this is a longer path
 - So, prefers its own one-hop path
 - And removes 4-7 link from the tree

Robust Spanning Tree Algorithm

- Algorithm must react to failures
 - Failure of the root node
 - Need to elect a new root, with the next lowest identifier
 - Failure of other switches and links
 - Need to recompute the spanning tree
- Root switch continues sending messages
 - Periodically reannouncing itself as the root (1, 0, 1)
 - Other switches continue forwarding messages
- Detecting failures through timeout (soft state)
 - Switch waits to hear from others
 - Eventually times out and claims to be the root

Virtual LANs

- Once we have switches, we can enforce policies regarding isolation
 - Group users based on organizational structure rather than physical layout of building
- Implemented as “virtual LANs” or VLANs
 - Associate a “color” (tag) with either each switch interface
 - Assuming entire segment it serves on same VLAN
 - ... or with each MAC address
 - Also allows hosts to move from one physical location to another
- Security:
 - Prevents nodes from seeing traffic not meant for them
 - Can force traffic leaving the VLAN to transit control point
 - E.g., firewall or Intrusion Detection System (IDS)

Example: Two Virtual LANs

- Red VLAN and Orange VLAN
 - Switches forward traffic as needed
Moving From Switches to Routers

- Advantages of switches over routers
 - Plug-and-play
 - Fast filtering and forwarding of frames

- Disadvantages of switches over routers
 - Topology restricted to a spanning tree
 - Large networks require large ARP tables
 - Broadcast storms can cause the network to collapse
 - Can’t accommodate non-Ethernet segments (why not?)

Comparing Hubs, Switches & Routers

<table>
<thead>
<tr>
<th></th>
<th>hubs</th>
<th>switches</th>
<th>routers</th>
</tr>
</thead>
<tbody>
<tr>
<td>traffic isolation</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>plug & play</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>optimized routing</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>cut-through</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Summary

- Ethernet as an exemplar of link-layer technology
- Simplest form, single segment:
 - Carrier sense, collision detection, and random access
- Extended to span multiple segments:
 - Hubs: physical-layer interconnects
 - Bridges & switches: link-layer interconnects
- Key ideas in switches
 - Cut-through switching
 - Self learning of the switch table
 - Spanning trees
 - Virtual LANs (VLANs)
- Next time: midterm review