Shortest-Path Routing
Reading: Sections P&D 4.2

EE122: Intro to Communication Networks
Fall 2006 (MW 4:00-5:30 in Donner 155)
Vern Paxson
TAs: Dilip Antony Joseph and Sukun Kim
http://inst.eecs.berkeley.edu/~ee122/
Materials with thanks to Jennifer Rexford, Ion Stoica and colleagues at Princeton and UC Berkeley

What we have learnt so far ...

• Sending IP packets from source to destination through a series of routers
 – Router looks up destination IP address in a table
 – Forwards the packet to the corresponding next hop

• Sending Ethernet frames from source to destination through a series of switches
 – Switch looks up destination MAC address in a table
 – Forwards the frame on the corresponding port

• What important task did we NOT talk about?
 – How are these forwarding tables filled with information?
 – Routing

• What about self-learning in switches?
What is Routing?

• A famous quotation from RFC 791
 “A name indicates what we seek. An address indicates where it is. A route indicates how we get there.”
 -- Jon Postel

Why Does Routing Matter?

• We need good end-to-end performance
 – Find the shortest/best path
 • Propagation delay, throughput, packet loss

• Ensure efficient use of network resources
 – Balance traffic over the routers and links
 – Avoid congestion by directing traffic to lightly-loaded links

• Withstand disruptions
 – Failures, maintenance, and load balancing
 – Limit packet loss and delay during changes
Know Thy Network

- Routing requires knowledge of the network structure
- Centralized global state
 - Single entity knows the complete network structure
 - Can calculate all routes centrally
 - Problems with this approach?
- Distributed global state
 - Every router knows the complete network structure
 - Independently calculates routes
 - Problems with this approach?
- Distributed only local state
 - Every router knows only about its neighboring routers
 - Independently calculates routes
 - Problems with this approach?

Link State Routing
E.g. Algorithm: Dijkstra
E.g. Protocol: OSPF

Distance Vector Routing
E.g. Algorithm: Bellman Ford
E.g. Protocol: RIP

Modeling a Network

- Modeled as a graph
 - Routers \rightarrow nodes
 - Link \rightarrow edges
 - Edge cost
 - delay
 - congestion level
- Goal of Routing
 - Determine a “good” path through the network from source to destination
 - Good means usually the shortest path
Link State Routing

- Each router has a complete picture of the network

- How does each router get the global state?
 - Each router reliably floods information about its neighbors to every other router (more later)

- Each router independently calculates the shortest path from itself to every other router
 - Dijkstra’s Shortest Path Algorithm

Dijkstra’s Shortest Path Algorithm

- Named after Edsger W. Dijkstra (1930-2002)

- INPUT
 - Net topology, link costs known to all nodes

- OUTPUT
 - Least cost paths from one node (“source”) to all other nodes
Notation

- \(c(i,j) \): link cost from node \(i \) to \(j \); cost infinite if not direct neighbors
- \(D(v) \): current value of cost of path from source to destination \(v \)
- \(p(v) \): predecessor node along path from source to \(v \), that is next to \(v \)
- \(S \): set of nodes whose least cost path definitively known

Dijsktra’s Algorithm

1. **Initialization:**
 2. \(S = \{A\} \);
 3. for all nodes \(v \)
 4. if \(v \) adjacent to \(A \)
 5. then \(D(v) = c(A,v) \);
 6. else \(D(v) = \infty \);
 7.

8. **Loop**
 9. find \(w \) not in \(S \) such that \(D(w) \) is a minimum;
 10. add \(w \) to \(S \);
 11. update \(D(v) \) for all \(v \) adjacent to \(w \) and not in \(S \):
 12. \(D(v) = \min(D(v), D(w) + c(w,v)) \);
 // new cost to \(v \) is either old cost to \(v \) or known
 // shortest-path cost to \(w \) plus cost from \(w \) to \(v \)
 13. until all nodes in \(S \);
Example: Dijkstra’s Algorithm

Initialization:
1. \(S = \{A\}; \)
2. for all nodes \(v \)
3. if \(v \) adjacent to \(A \)
4. then \(D(v) = c(A,v) \);
5. else \(D(v) = \infty \);

...

Loop
8. find \(w \) not in \(S \) s.t. \(D(w) \) is a minimum;
9. add \(w \) to \(S \);
10. update \(D(v) \) for all \(v \) adjacent to \(w \) and not in \(S \):
11. \(D(v) = \min(D(v), D(w) + c(w,v)) \);
12. until all nodes in \(S \);
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td>2,D</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td>4,E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Loop} \]
- \(\text{find } w \text{ not in } S \text{ s.t. } D(w) \text{ is a minimum; } \)
- \(\text{add } w \text{ to } S; \)
- \(\text{update } D(v) \text{ for all } v \text{ adjacent to } w \text{ and not in } S; \)
- \(D(v) = \min(D(v), D(w) + c(w,v)); \)
- \(\text{until all nodes in } S; \)
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td>2,D</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td>4,E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ADEBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... **Loop**

9. find w not in S s.t. D(w) is a minimum;
10. add w to S;
11. update D(v) for all v adjacent to w and not in S:
12. \(D(v) = \min(D(v), D(w) + c(w,v)) \);
13. until all nodes in S;

Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td>2,D</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td>4,E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ADEBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ADEBCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... **Loop**

9. find w not in S s.t. D(w) is a minimum;
10. add w to S;
11. update D(v) for all v adjacent to w and not in S:
12. \(D(v) = \min(D(v), D(w) + c(w,v)) \);
13. until all nodes in S;
The Forwarding Table

- Running Dijkstra at node A gives the shortest path from A to all destinations
- We then construct the forwarding table

<table>
<thead>
<tr>
<th>Destination</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>(A,B)</td>
</tr>
<tr>
<td>C</td>
<td>(A,D)</td>
</tr>
<tr>
<td>D</td>
<td>(A,D)</td>
</tr>
<tr>
<td>E</td>
<td>(A,D)</td>
</tr>
<tr>
<td>F</td>
<td>(A,D)</td>
</tr>
</tbody>
</table>

- Why have separate routing and forwarding tables?

Complexity

- How much processing does running the Dijkstra algorithm take?
- Assume a network consisting of n nodes
 - Each iteration: need to check all nodes, w, not in S
 - n*(n+1)/2 comparisons: O(n^2)
 - More efficient implementations possible: O(n*log(n))
Oscillations

- Assume link cost = amount of carried traffic

- How can you avoid oscillations?

Obtaining Global State

- Flooding
 - Each router sends link-state information out through its links
 - The next node sends it out through all of its links
 - except the one where the information arrived
Flooding the Link State

- **Reliable flooding**
 - Ensure all nodes receive link-state information
 - Ensure all nodes use the latest version

- **Challenges**
 - Packet loss
 - Out-of-order arrival

- **Solutions**
 - Acknowledgments and retransmissions
 - Sequence numbers

Transient Disruptions

- **Detection delay**
 - A node does not detect a failed link immediately
 - … and forwards data packets into a “blackhole”
 - Depends on timeout for detecting lost hellos
Transient Disruptions

- **Inconsistent link-state database**
 - Some routers know about failure before others
 - The shortest paths are no longer consistent
 - Can cause transient forwarding loops

![Diagram of transient disruptions](image.png)

A and D think that this is the path to C
E thinks that this is the path to C

Scaling Link-State Routing

- **Overhead of link-state routing**
 - Flooding link-state packets throughout the network
 - Running Dijkstra’s shortest-path algorithm
 - Becomes unscalable when 100s of routers

- **Introducing hierarchy through “areas”**

![Diagram of area hierarchy](image.png)

area border router

Area 0
Area 1
Area 2
Area 3
Area 4
5 Minute Break

• After the break: Distance Vector Routing

Distance Vector Routing

• Each router knows the links to its immediate neighbors
 – Does not flood this information to the whole network

• Each router has some idea about the shortest path to each destination
 – E.g.: Router A: I can get to router B with cost 11 via next hop router D
 – Routers exchange this information with their neighboring routers
 • Again, no flooding the whole network
 – Routers update their idea of the best path using info from neighbors
Bellman-Ford Algorithm

- Named after Richard Bellman and Ford
- INPUT
 - Link costs to each neighbor
- OUTPUT
 - Next hop to each destination and the corresponding cost
 - Does not give the complete path to the destination

Bellman-Ford - Overview

- Each router maintains a table
 - Row for each possible destination
 - Column for each directly-attached neighbor to node
 - Entry in row Y and column Z of node X ➔ best known distance from X to Y, via Z as next hop
- Each local iteration caused by:
 - Local link cost change
 - Message from neighbor
- Notify neighbors only if least cost path to any destination changes
 - Neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or msg from neighbor)

recompute distance table

if least cost path to any dest has changed, notify neighbors
Distance Vector Algorithm (cont'd)

1 Initialization:
2 for all neighbors V do
3 if V adjacent to A
4 D(A, V) = c(A, V);
5 else
6 D(A, V) = ∞;
7 loop:
8 wait (until A sees a link cost change to neighbor V
9 or until A receives update from neighbor V)
10 if (D(A, V) changes by d)
11 for all destinations Y through V do
12 D(A, Y) = D(A, Y) + d
13 else if (update D(V, Y) received from V)
14 /* shortest path from V to some Y has changed */
15 D(A, Y) = D(A, V) + D(V, Y);
16 if (there is a new minimum for destination Y)
17 send D(A, Y) to all neighbors
18 forever

Example: Distance Vector Algorithm

<table>
<thead>
<tr>
<th>Node</th>
<th>D(A,B)</th>
<th>D(A,C)</th>
<th>D(B,A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dest</td>
<td>Cost</td>
<td>NextHop</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>∞</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: for simplicity in this lecture examples we show only the shortest distances to each destination
Example: 1st Iteration (C → A)

\[D(A, D) = D(A, C) + D(C, D) = 7 + 1 = 8 \]

Characteristics:
- Node A:
 - Destination: \(B\), Cost: 2, Next Hop: B
 - Destination: \(C\), Cost: 7, Next Hop: C
 - Destination: \(D\), Cost: 8, Next Hop: C

- Node B:
 - Destination: \(A\), Cost: 2, Next Hop: A
 - Destination: \(C\), Cost: 1, Next Hop: C
 - Destination: \(D\), Cost: 3, Next Hop: D

Example: 1st Iteration (B → A, C → A)

Characteristics:
- Node A:
 - Destination: \(B\), Cost: 2, Next Hop: B
 - Destination: \(C\), Cost: 3, Next Hop: B
 - Destination: \(D\), Cost: 5, Next Hop: B

- Node B:
 - Destination: \(A\), Cost: 2, Next Hop: A
 - Destination: \(C\), Cost: 1, Next Hop: C
 - Destination: \(D\), Cost: 3, Next Hop: D

- Node C:
 - Destination: \(A\), Cost: 7, Next Hop: A
 - Destination: \(B\), Cost: 1, Next Hop: B
 - Destination: \(D\), Cost: 1, Next Hop: D

- Node D:
 - Destination: \(A\), Cost: ∞, Next Hop: -
 - Destination: \(B\), Cost: 3, Next Hop: B
 - Destination: \(C\), Cost: 1, Next Hop: C
Example: End of 1st Iteration

![Diagram showing network nodes and message flow between nodes A, B, C, and D.]

Node A
\[\begin{array}{|c|c|c|}
\hline
\text{Dest.} & \text{Cost} & \text{NextHop} \\
\hline
B & 2 & B \\
C & 3 & B \\
D & 5 & B \\
\hline
\end{array}\]

Node B
\[\begin{array}{|c|c|c|}
\hline
\text{Dest.} & \text{Cost} & \text{NextHop} \\
\hline
A & 2 & A \\
C & 1 & C \\
D & 2 & C \\
\hline
\end{array}\]

Node C
\[\begin{array}{|c|c|c|}
\hline
\text{Dest.} & \text{Cost} & \text{NextHop} \\
\hline
A & 3 & B \\
B & 1 & B \\
D & 1 & D \\
\hline
\end{array}\]

Node D
\[\begin{array}{|c|c|c|}
\hline
\text{Dest.} & \text{Cost} & \text{NextHop} \\
\hline
A & 5 & B \\
B & 2 & C \\
C & 1 & C \\
\hline
\end{array}\]

Example: End of 2nd Iteration

![Diagram showing network nodes and message flow between nodes A, B, C, and D.]

Node A
\[\begin{array}{|c|c|c|}
\hline
\text{Dest.} & \text{Cost} & \text{NextHop} \\
\hline
B & 2 & B \\
C & 3 & B \\
D & 4 & B \\
\hline
\end{array}\]

Node B
\[\begin{array}{|c|c|c|}
\hline
\text{Dest.} & \text{Cost} & \text{NextHop} \\
\hline
A & 2 & A \\
C & 1 & C \\
D & 2 & C \\
\hline
\end{array}\]

Node C
\[\begin{array}{|c|c|c|}
\hline
\text{Dest.} & \text{Cost} & \text{NextHop} \\
\hline
A & 3 & B \\
B & 1 & B \\
D & 1 & D \\
\hline
\end{array}\]

Node D
\[\begin{array}{|c|c|c|}
\hline
\text{Dest.} & \text{Cost} & \text{NextHop} \\
\hline
A & 4 & C \\
B & 2 & C \\
C & 1 & C \\
\hline
\end{array}\]

Example: End of 3rd Iteration

<table>
<thead>
<tr>
<th>Node A</th>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node B</th>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Node C

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>D</td>
</tr>
</tbody>
</table>

Node D

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
</tbody>
</table>

Loop:

- else if (update D(V, Y) received from V)
- D(A, Y) = D(A, V) + D(V, Y);
- if (there is a new minimum for destination Y)
- send D(A, Y) to all neighbors
- forever

Nothing changes → algorithm terminates

Distance Vector: Link Cost Changes

```
7 loop:
8 wait (until A sees a link cost change to neighbor V
9     or until A receives update from neighbor V)
10 if (D(A, V) changes by d)
11     for all destinations Y through V do
12         D(A, Y) = D(A, Y) + d
13 else if (update D(V, Y) received from V)
14     D(A, Y) = D(A, V) + D(V, Y);
15     if (there is a new minimum for destination Y)
16     send D(A, Y) to all neighbors
17 forever
```

Node B

<table>
<thead>
<tr>
<th>A</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Node C

<table>
<thead>
<tr>
<th>A</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Node D

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
</tbody>
</table>

“good news travels fast”
Distance Vector: Count to Infinity Problem

7 loop:
8 wait (until A sees a link cost change to neighbor V
9 or until A receives update from neighbor V)
10 if ($D(A, V)$ changes by d)
11 for all destinations Y through V do
12 $D(A, Y) = D(A, Y) + d$;
13 else if (update $D(V, Y)$ received from V)
14
B also maintains shortest distance to A through C, which is 6.
Thus $D(B, A)$ becomes 6!

Distance Vector: Poisoned Reverse

- If C routes through B to get to A:
 - C tells B its (C's) distance to A is infinite
 (so B won't route to A via C)
 - Will this completely solve count to infinity problem?

Node B

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>A</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>N</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>B</td>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B</td>
<td>B</td>
<td>1</td>
</tr>
</tbody>
</table>

Node C

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>A</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>B</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>N</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>A</td>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B</td>
<td>B</td>
<td>1</td>
</tr>
</tbody>
</table>

Link cost changes here; B updates $D(B, A) = 60$ as C has advertised $D(C, A) = \infty$

Algorithm terminates
Link State vs. Distance Vector

Per-node message complexity
- LS: \(O(e) \) messages
 - \(e \): number of edges
- DV: \(O(d) \) messages, many times
 - \(d \): node’s degree

Complexity/Convergence
- LS: \(O(n^2) \) computation
- DV: convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?
- LS:
 - node can advertise incorrect link cost
 - each node computes only its own table
- DV:
 - node can advertise incorrect path cost
 - each node’s table used by others; error propagate through network

Are we done?
- No. We still have to take care of:
 - Scaling to Internet size
 - Routing policy issues
- Next Lecture
 - Internet scale routing by Prof. Scott Shenker
Conclusions

• Routing is a distributed algorithm
 – Different from forwarding
 – React to changes in the topology
 – Compute the shortest paths

• Two main shortest-path algorithms
 – Dijkstra \rightarrow link-state routing (e.g., OSPF)
 – Bellman-Ford \rightarrow distance vector routing (e.g., RIP)

• Convergence process
 – Changing from one topology to another
 – Transient periods of inconsistency across routers

• Next time: BGP and policy
 – Reading: Section 4.3.3, 4.3.4

Backup Slides

• To be covered if time permits

• Refer to textbook for more information about these topics
When to Initiate Flooding

- **Topology change**
 - Link or node failure
 - Link or node recovery

- **Configuration change**
 - Link cost change

- **Periodically**
 - Refresh the link-state information
 - Typically (say) 30 minutes
 - Corrects for possible corruption of the data

Convergence

- **Getting consistent routing information to all nodes**
 - E.g., all nodes having the same link-state database

- **Consistent forwarding after convergence**
 - All nodes have the same link-state database
 - All nodes forward packets on shortest paths
 - The next router on the path forwards to the next hop
Convergence Delay

• Time elapsed before every router has a consistent picture of the network

• Sources of convergence delay
 – Detection latency
 – Flooding of link-state information
 – Shortest-path computation
 – Creating the forwarding table

• Performance during convergence period
 – Lost packets due to blackholes and TTL expiry
 – Looping packets consuming resources
 – Out-of-order packets reaching the destination

• Very bad for VoIP, online gaming, and video

Reducing Convergence Delay

• Faster detection
 – Smaller hello timers
 – Link-layer technologies that can detect failures

• Faster flooding
 – Flooding immediately
 – Sending link-state packets with high-priority

• Faster computation
 – Faster processors on the routers
 – Incremental Dijkstra algorithm

• Faster forwarding-table update
 – Data structures supporting incremental updates
Detecting Topology Changes

• Beaconing
 – Periodic “hello” messages in both directions
 – Detect a failure after a few missed “hellos”

 “hello”

• Performance trade-offs
 – Detection speed
 – Overhead on link bandwidth and CPU
 – Likelihood of false detection