Shortest-Path Routing
Reading: Sections P&D 4.2

What we have learnt so far ...
• Sending IP packets from source to destination through a series of routers
 – Router looks up destination IP address in a table
 – Forwards the packet to the corresponding next hop
• Sending Ethernet frames from source to destination through a series of switches
 – Switch looks up destination MAC address in a table
 – Forwards the frame on the corresponding port
• What important task did we NOT talk about?
 – How are these forwarding tables filled with information?
 – Routing
• What about self-learning in switches?

What is Routing?
• A famous quotation from RFC 791
 “A name indicates what we seek.
 An address indicates where it is.
 A route indicates how we get there.”
 -- Jon Postel

Why Does Routing Matter?
• We need good end-to-end performance
 – Find the shortest/best path
 • Propagation delay, throughput, packet loss
• Ensure efficient use of network resources
 – Balance traffic over the routers and links
 – Avoid congestion by directing traffic to lightly-loaded links
• Withstand disruptions
 – Failures, maintenance, and load balancing
 – Limit packet loss and delay during changes

Know Thy Network
• Routing requires knowledge of the network structure
 • Centralized global state
 – Single entity knows the complete network structure
 – Can calculate all routes centrally
 – Problems with this approach?
 • Distributed global state
 – Every router knows the complete network structure
 – Independently calculates routes
 – Problems with this approach?
 • Distributed only local state
 – Every router knows only about its neighboring routers
 – Independently calculates routes
 – Problems with this approach?

Modeling a Network
• Modeled as a graph
 – Routers → nodes
 – Link → edges
 • Edge cost
 • delay
 • congestion level
• Goal of Routing
 – Determine a “good” path through the network from source to destination
 – Good means usually the shortest path
Link State Routing

- Each router has a complete picture of the network
- How does each router get the global state?
 - Each router reliably floods information about its neighbors to every other router (more later)
- Each router independently calculates the shortest path from itself to every other router
 - Dijkstra’s Shortest Path Algorithm

Dijkstra’s Shortest Path Algorithm

- Named after Edsger W. Dijkstra (1930-2002)
- INPUT
 - Net topology, link costs known to all nodes
- OUTPUT
 - Least cost paths from one node (“source”) to all other nodes

Notation

- \(c(i,j) \): link cost from node \(i \) to \(j \); cost infinite if not direct neighbors
- \(D(v) \): current value of cost of path from source to destination \(v \)
- \(p(v) \): predecessor node along path from source to \(v \), that is next to \(v \)
- \(S \): set of nodes whose least cost path definitively known

Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>(D(B),p(B))</th>
<th>(D(C),p(C))</th>
<th>(D(D),p(D))</th>
<th>(D(E),p(E))</th>
<th>(D(F),p(F))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>

1. Initialization:
2. \(S = \{A\} \)
3. for all nodes \(v \)
4. if \(v \) adjacent to \(A \)
5. then \(D(v) = c(A,v) \)
6. else \(D(v) = \infty \)

Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>(D(B),p(B))</th>
<th>(D(C),p(C))</th>
<th>(D(D),p(D))</th>
<th>(D(E),p(E))</th>
<th>(D(F),p(F))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>

8. Loop
9. find \(w \) not in \(S \) s.t. \(D(w) \) is a minimum
10. add \(w \) to \(S \)
11. update \(D(v) \) for all \(v \) adjacent to \(w \) and not in \(S \):
12. \(D(v) = \min(D(v), D(w) + c(w,v)) \)
13. until all nodes in \(S \)
Example: Dijkstra’s Algorithm
Step start S D(B),p(B) D(C),p(C) D(D),p(D) D(E),p(E) D(F),p(F)
0 A 2,A 5,A 1,A ∞ ∞
1 AD 4,D 2,A ∞
2 ADE 3,E 2,D 4,E
3 ADEB
4 ADEBC
5

![Diagram of Dijkstra's Algorithm](image)

Steps:
1. Find w not in S s.t. D(w) is a minimum;
2. Add w to S;
3. Update D(v) for all v adjacent to w and not in S:
 - D(v) = min(D(v), D(w) + c(w,v));
4. Until all nodes in S;

The Forwarding Table
- Running Dijkstra at node A gives the shortest path from A to all destinations
- We then construct the forwarding table

<table>
<thead>
<tr>
<th>Destination</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>(A,B)</td>
</tr>
<tr>
<td>C</td>
<td>(A,D)</td>
</tr>
<tr>
<td>D</td>
<td>(A,D)</td>
</tr>
<tr>
<td>E</td>
<td>(A,D)</td>
</tr>
<tr>
<td>F</td>
<td>(A,D)</td>
</tr>
</tbody>
</table>

- Why have separate routing and forwarding tables?

Complexity
- How much processing does running the Dijkstra algorithm take?
- Assume a network consisting of n nodes
 - Each iteration: need to check all nodes, w, not in S
 - n*(n+1)/2 comparisons: O(n^2)
 - More efficient implementations possible: O(n*log(n))
Oscillations

• Assume link cost = amount of carried traffic

A D C B
1+e 0 e 1
initially
... recompute routing ... recompute ... recompute

• How can you avoid oscillations?

Obtaining Global State

• Flooding
 – Each router sends link-state information out through its links
 – The next node sends it out through all of its links
 • except the one where the information arrived

Flooding the Link State

• Reliable flooding
 – Ensure all nodes receive link-state information
 – Ensure all nodes use the latest version

• Challenges
 – Packet loss
 – Out-of-order arrival

• Solutions
 – Acknowledgments and retransmissions
 – Sequence numbers

Transient Disruptions

• Inconsistent link-state database
 – Some routers know about failure before others
 – The shortest paths are no longer consistent
 – Can cause transient forwarding loops

A and D think that this is the path to C
E thinks that this is the path to C

Scaling Link-State Routing

• Overhead of link-state routing
 – Flooding link-state packets throughout the network
 – Running Dijkstra’s shortest-path algorithm
 – Becomes unscalable when 100s of routers
• Introducing hierarchy through “areas”
Distance Vector Routing

- Each router knows the links to its immediate neighbors
- Does not flood this information to the whole network
- Each router has some idea about the shortest path to each destination
 - E.g.: Router A can get to router B with cost 11 via next hop router D
 - Routers exchange this information with their neighboring routers
 - Again, no flooding the whole network
 - Routers update their idea of the best path using info from neighbors

Bellman-Ford Algorithm

- Named after Richard Bellman and Ford
- INPUT
 - Link costs to each neighbor
- OUTPUT
 - Next hop to each destination and the corresponding cost
 - Does not give the complete path to the destination

Bellman-Ford - Overview

- Each router maintains a table
 - Row for each possible destination
 - Column for each directly-attached neighbor to node
 - Entry in row Y and column Z of node X
 - best known distance from X to Y, via Z as next hop
- Each local iteration caused by:
 - Local link cost change
 - Message from neighbor
- Notify neighbors only if least cost path to any destination changes
 - Neighbors then notify their neighbors if necessary
- Each node:
 - wait for (change in local link cost or msg from neighbor)
 - recompute distance table
 - if least cost path to any dest has changed, notify neighbors

Distance Vector Algorithm (cont’d)

```
1 Initialization:
2 for all neighbors V do
3   if V adjacent to A
4     D(A, V) = c(A, V);
5   else
6     D(A, V) = ∞;
7   loop:
8     wait (until A sees a link cost change to neighbor V
9       or until A receives update from neighbor V)
10   if (D(A,Y) changes by d)
11     for all destinations Y through V do
12       D(A,Y) = D(A,Y) + d
13 else if (update D(V, Y) received from V)
14     if (shortest path from V to some Y has changed Y)
15       D(A,Y) = D(A,V) + D(V, Y);
16     if (there is a new minimum for destination Y)
17       send D(A, Y) to all neighbors
18     forever
```

Example: Distance Vector Algorithm

<table>
<thead>
<tr>
<th>Node</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

Note: for simplicity in this lecture examples we show only the shortest distances to each destination
Example: 1st Iteration (C → A)

Example: 1st Iteration (B→A, C→A)

Example: End of 1st Iteration

Example: End of 2nd Iteration

Example: End of 3rd Iteration

Distance Vector: Link Cost Changes

Node A

Dest.	Cost	NextHop	Dest.	Cost	NextHop
B | 2 | B | A | 2 | A
C | 3 | B | C | 1 | C
D | 4 | B | D | 2 | C

Node B

Dest.	Cost	NextHop	Dest.	Cost	NextHop
B | 2 | B | A | 2 | A
C | 3 | B | C | 1 | C
D | 4 | B | D | 2 | C

Node C

Dest.	Cost	NextHop	Dest.	Cost	NextHop
A | 3 | B | A | 3 | B
B | 1 | B | B | 3 | B
D | 1 | D | C | 1 | C

Node D

Dest.	Cost	NextHop	Dest.	Cost	NextHop
A | 2 | B | A | 4 | C
B | 1 | B | B | 2 | C
D | 1 | D | C | 1 | C

Note:
- D(A, D) = D(A, B) + D(B, D) = 2 + 3 = 5
- D(A, C) = D(A, B) + D(B, C) = 2 + 1 = 3

Example: End of 3rd Iteration

Node A

Dest.	Cost	NextHop	Dest.	Cost	NextHop
B | 2 | B | A | 2 | A
C | 3 | B | C | 1 | C
D | 4 | B | D | 2 | C

Node B

Dest.	Cost	NextHop	Dest.	Cost	NextHop
B | 2 | B | A | 2 | A
C | 3 | B | C | 1 | C
D | 4 | B | D | 2 | C

Node C

Dest.	Cost	NextHop	Dest.	Cost	NextHop
A | 3 | B | A | 4 | C
B | 1 | B | B | 2 | C
D | 1 | D | C | 1 | C

Node D

Dest.	Cost	NextHop	Dest.	Cost	NextHop
A | 2 | B | A | 4 | C
B | 1 | B | B | 2 | C
D | 1 | D | C | 1 | C

Distances:
- D(A, D) = 5
- D(A, C) = 3
- D(A, B) = 2

Message Order:
Distance Vector: Count to Infinity Problem

- If A routes through B to get to C:
 - A tells B (C’s) distance to A is infinite
 - B won’t route to A via C

- Will this completely solve count to infinity problem?

Distance Vector: Poisoned Reverse

- If C routes through B to get to A:
 - C tells B (C’s) distance to A is infinite
 - B won’t route to A via C

- Will this completely solve count to infinity problem?

Link State vs. Distance Vector

- Per-node message complexity
 - LS: $O(e)$ messages
 - e: number of edges
 - DV: $O(d)$ messages, many times
 - d: node’s degree

- Complexity/Convergence
 - LS: $O(n^2)$ computation
 - DV: convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?

- LS:
 - node can advertise incorrect link cost
 - each node computes only its own table

- DV:
 - node can advertise incorrect path cost
 - each node’s table used by others; error propagates through network

Conclusions

- Routing is a distributed algorithm
 - Different from forwarding
 - React to changes in the topology
 - Compute the shortest paths

- Two main shortest-path algorithms
 - Dijkstra → link-state routing (e.g., OSPF)
 - Bellman-Ford → distance vector routing (e.g., RIP)

- Convergence process
 - Changing from one topology to another
 - Transient periods of inconsistency across routers

- Next time: BGP and policy
 - Reading: Section 4.3.3, 4.3.4

Are we done?

- No. We still have to take care of:
 - Scaling to Internet size
 - Routing policy issues

- Next Lecture
 - Internet scale routing by Prof. Scott Shenker

Backup Slides

- To be covered if time permits
- Refer to textbook for more information about these topics
When to Initiate Flooding

• **Topology change**
 – Link or node failure
 – Link or node recovery

• **Configuration change**
 – Link cost change

• **Periodically**
 – Refresh the link-state information
 – Typically (say) 30 minutes
 – Corrects for possible corruption of the data

Convergence

• **Getting consistent routing information to all nodes**
 – E.g., all nodes having the same link-state database

• **Consistent forwarding after convergence**
 – All nodes have the same link-state database
 – All nodes forward packets on shortest paths
 – The next router on the path forwards to the next hop

Convergence Delay

• **Time elapsed before every router has a consistent picture of the network**

• **Sources of convergence delay**
 – Detection latency
 – Flooding of link-state information
 – Shortest-path computation
 – Creating the forwarding table

• **Performance during convergence period**
 – Lost packets due to blackholes and TTL expiry
 – Looping packets consuming resources
 – Out-of-order packets reaching the destination

• **Very bad for VoIP, online gaming, and video**

Reducing Convergence Delay

• **Faster detection**
 – Smaller hello timers
 – Link-layer technologies that can detect failures

• **Faster flooding**
 – Flooding immediately
 – Sending link-state packets with high-priority

• **Faster computation**
 – Faster processors on the routers
 – Incremental Dijkstra algorithm

• **Faster forwarding-table update**
 – Data structures supporting incremental updates

Detecting Topology Changes

• **Beaconing**
 – Periodic “hello” messages in both directions
 – Detect a failure after a few missed “hellos”

• **Performance trade-offs**
 – Detection speed
 – Overhead on link bandwidth and CPU
 – Likelihood of false detection