Unit 25
Network Management
Network Security
Network Management
Acknowledgements - slides coming from:

- Based to big extent on slides from the books of William Stallings and Kurose/Ross.
Network Management

- Networks are becoming indispensable
- More complexity makes failure more likely
- Require automatic network management tools
- Standards required to allow multi-vendor networks

Covering:
 - services
 - protocols
 - data Structures.
Network Management Systems

• Collection of tools for network management
• Operator interface
• Powerful, user friendly command set
• Minimal amount of separate equipment
 – i.e. use existing equipment
• View entire network as unified architecture
• Active elements provide regular feedback
Network Management: Architecture Overview

Algorithm to solve a specific Management Task

Information

Target Network Element

Model of the Network Element

Manager

Agent

Network Management Protocol

Protocol Stack

Protocol Stack

Network Element

Target Network Element

Protocol Stack
Network Management: Managed Objects

Managed Objects logically represent certain properties of network elements for the purpose of network management.

Managed Objects are organized in a conceptual Management Information Base (MIB) with the MIB as a whole representing the management capabilities of a specific component.
SNMP: Internet Network Management

- Management is done from the management station (manager)
- It communicates via the SNMP protocol with agents
- Information from a node not being able to run an agent can be retrieved from a proxy agent running on another node
- The biggest part of SNMP describes the kind of information that a specific type of agent provides and the format of it
- Each managed node holds the information that can be retrieved by SNMP in a special information base called MIB (Management Information Base) (RFC 1213)
- The MIB uses ASN.1 to describe the managed information as objects. The ASN.1 “OBJECT IDENTIFIER” is used to uniquely identify every object
PRINCIPLE OPERATION

MANAGER

TABLES

VARIABLES

AGENTS
Management Station

- stand alone system or part of shared system
- interface for human network manager
- set of management applications
 - data analysis
 - fault recovery
- interface to monitor and control network
- translate manager’s requirements into monitoring and control of remote elements
- data base of network management information extracted from managed entities
Management Agent

• equip key platforms with agent software
 – e.g. hosts, bridges, hubs, routers

• allows their management by management station

• respond to requests for information

• respond to requests for action

• asynchronously supply unsolicited information
Distributed Network Management Example
SNMP Architecture
SNMP Architecture
SNMP protocol

Two ways to convey MIB info, commands:

- **request/response mode**
 - Managing entity requests data from the agent.
 - Agent responds with the requested data.

- **trap mode**
 - Managed device sends a trap message to the managing entity.
 - No direct request or response interaction.
SNMP: Protocol Elements

- The SNMP protocol is request - response based:
 - A request is sent to an agent from the management station
 - Normally the agent replies with the requested information or confirms the update
 - Various errors can also be reported

<table>
<thead>
<tr>
<th>SNMP Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get-request Requests the value of one or more variables</td>
</tr>
<tr>
<td>Get-next-request Requests the variable following this one</td>
</tr>
<tr>
<td>Get-bulk-request Fetches a large table</td>
</tr>
<tr>
<td>Get-response Responds the requested values</td>
</tr>
<tr>
<td>Set-request Updates one or more variables</td>
</tr>
<tr>
<td>Trap Agent-to-manager: report an event</td>
</tr>
<tr>
<td>Inform-request Manager-to-manager message describing local MIB</td>
</tr>
</tbody>
</table>
SNMPv2 PROTOCOL OPERATIONS

- **get**
 - MIB
 - response
 - manager - agent

- **set**
 - MIB
 - response
 - manager - agent

- **getNext**
 - MIB
 - response
 - manager - agent

- **getBulk**
 - MIB
 - response
 - manager - agent

- **trap**
 - MIB
 - manager - agent

- **inform**
 - MIB
 - "agent"
MIB module specified via SMI

MODULE-IDENTITY
(100 standardized MIBs, more vendor-specific)

MODULE

OBJECT-TYPE construct

objects specified via SMI
SNMP Naming

question: how to name every possible standard object (protocol, data, more..) in every possible network standard??

answer: *ISO Object Identifier tree:*

- hierarchical naming of all objects
- each branchpoint has name, number

![Diagram showing hierarchical Object Identifiers](image-url)

- **1.3.6.1.2.1.7.1**
 - ISO
 - US DoD
 - Internet
 - udpInDatagrams
 - UDP
 - MIB2
 - management
SNMP: Organization of Management Information

Part of the ASN.1 Object Naming Tree
SNMP: Structure of Management Information

- SNMP uses a subset of ASN.1 with some new definitions called *structure of management information (SMI)* [RFC1442]

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Bytes</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>Numeric</td>
<td>4</td>
<td>Integer (32 bits in current implementations)</td>
</tr>
<tr>
<td>Counter32</td>
<td>Numeric</td>
<td>4</td>
<td>Unsigned 32-bit counter that wraps</td>
</tr>
<tr>
<td>Gauge32</td>
<td>Numeric</td>
<td>4</td>
<td>Unsigned value that does not wrap</td>
</tr>
<tr>
<td>Integer32</td>
<td>Numeric</td>
<td>4</td>
<td>32 bits even on a 64-bit CPU</td>
</tr>
<tr>
<td>UInteger32</td>
<td>Numeric</td>
<td>4</td>
<td>Like Integer32 but unsigned</td>
</tr>
<tr>
<td>Counter64</td>
<td>Numeric</td>
<td>8</td>
<td>A 64-bit counter</td>
</tr>
<tr>
<td>Time Ticks</td>
<td>Numeric</td>
<td>4</td>
<td>In hundredths of a second since some epoch</td>
</tr>
<tr>
<td>Bit String</td>
<td>String</td>
<td>4</td>
<td>Bit map of 1 to 32 bits</td>
</tr>
<tr>
<td>Octet String</td>
<td>String</td>
<td>≥ 0</td>
<td>Variable length byte string</td>
</tr>
<tr>
<td>Opaque</td>
<td>String</td>
<td>≥ 0</td>
<td>Obsolete; for backward compatibility only</td>
</tr>
<tr>
<td>Object Identifier</td>
<td>String</td>
<td>> 0</td>
<td>A list of integers (see figure on preceding page)</td>
</tr>
<tr>
<td>IPAddress</td>
<td>String</td>
<td>4</td>
<td>A dotted decimal Internet address</td>
</tr>
<tr>
<td>NsapidAddress</td>
<td>String</td>
<td>< 22</td>
<td>An OSI NSAP address</td>
</tr>
</tbody>
</table>
EXAMPLE: ROUTING TABLE

<table>
<thead>
<tr>
<th>destination</th>
<th>next</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

TO RETRIEVE INDIVIDUAL TABLE ENTRIES

EACH ENTRY SHOULD GET A NAME
NAMING OF TABLE ENTRIES - II

- **POSSIBILITY 2 (USED BY SNMP): INTRODUCE AN INDEX COLUMN**

NEW-MIB:

- address (1)
 - 130.89.16.2

- info (2)

- routeTable (3)

 - dest(1)
 - next(2)

<table>
<thead>
<tr>
<th>dest(1)</th>
<th>next(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

OID of this table is **1.3**
Derived form the numbers of nodes...in their hierarchy...

EXAMPLE: THE VALUE OF *NEW-MIB routeTable next 5* IS **2**
TABLE INDEXING - MULTIPLE INDEX FIELDS: EXAMPLE

1 = low costs
2 = high reliability

routeTable (3)

<table>
<thead>
<tr>
<th>dest (1)</th>
<th>policy (2)</th>
<th>next (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>130.89.16.23</td>
<td>1</td>
<td>130.89.16.23</td>
</tr>
<tr>
<td>130.89.16.23</td>
<td>2</td>
<td>130.89.16.23</td>
</tr>
<tr>
<td>130.89.19.121</td>
<td>1</td>
<td>130.89.16.1</td>
</tr>
<tr>
<td>192.1.23.24</td>
<td>1</td>
<td>130.89.16.1</td>
</tr>
<tr>
<td>192.1.23.24</td>
<td>2</td>
<td>130.89.16.4</td>
</tr>
<tr>
<td>193.22.11.97</td>
<td>1</td>
<td>130.89.16.1</td>
</tr>
</tbody>
</table>

OID of Table Column number Index value 1 Index value 2

| 1.3.3.192.1.23.24.1 | 130.89.16.1 |
| 1.3.3.192.1.23.24.2 | 130.89.16.4 |
TABLE DEFINITION: eg. Route table

routeTable OBJECT-TYPE
SYNTAX SEQUENCE OF RouteEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This entity’s routing table"
 ::= {NEW-MIB 3}

routeEntry OBJECT-TYPE
SYNTAX RouteEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A route to a particular destination"
INDEX {dest, policy}
 ::= {routeTable 1}

RouteEntry ::= SEQUENCE {
 dest ipAddress,
 policy INTEGER,
 next ipAddress
}

TABLE DEFINITION (cont. 2)

<table>
<thead>
<tr>
<th>dest</th>
<th>OBJECT-TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNTAX</td>
<td>ipAddress</td>
</tr>
<tr>
<td>ACCESS</td>
<td>read-only</td>
</tr>
<tr>
<td>STATUS</td>
<td>current</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>"The address of a particular destination"</td>
</tr>
<tr>
<td>::=</td>
<td>{route-entry 1}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>policy</th>
<th>OBJECT-TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNTAX</td>
<td>INTEGER {</td>
</tr>
<tr>
<td>costs(1)</td>
<td>-- lowest delay</td>
</tr>
<tr>
<td>reliability(2)</td>
<td>-- highest reliability</td>
</tr>
<tr>
<td>ACCESS</td>
<td>read-only</td>
</tr>
<tr>
<td>STATUS</td>
<td>current</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>"The routing policy to reach that destination"</td>
</tr>
<tr>
<td>::=</td>
<td>{route-entry 2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>next</th>
<th>OBJECT-TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNTAX</td>
<td>ipAddress</td>
</tr>
<tr>
<td>ACCESS</td>
<td>read-write</td>
</tr>
<tr>
<td>STATUS</td>
<td>current</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>"The internet address of the next hop"</td>
</tr>
<tr>
<td>::=</td>
<td>{route-entry 3}</td>
</tr>
</tbody>
</table>
Network Management: Global perspective

Resources to be managed

- Application
- Data

Management Areas

- Application Management
- Information Management
- System Management
- Network Management

Network and System Resources

- Workstation
- Host
- PC

- Communication Network
 - Hardware: Bridges, Routers ...
 - Software: Protocol Implementation ...
SNMP v3

- addresses security issues of SNMP v1/2

- RFC 2570-2575

- defines overall architecture and security capability

- to be used with SNMP v2

- defines three security services
 - authentication
 - privacy
 - access control
SNMP v3 Services

- authentication assures that message is:
 - from identified source, not altered, not delayed or replayed
 - includes HMAC message authentication code

- privacy
 - encrypts messages using DES

- access control
 - pre configure agents to provide a number of levels of access to MIB for different managers
 - restricting access to information
 - limit operations
Security

Some very very short intro...
Goals of this part

- Give a brief glimpse of security in communication networks
- Basic goals and mechanisms
- Example: Firewalls

Security goals technically defined

- Confidentiality:
 - Data transmitted or stored should only be revealed to an intended audience
 - Confidentiality of entities is also referred to as anonymity

- Data Integrity:
 - It should be possible to detect any modification of data
 - This requires to be able to identify the creator of some data

- Accountability:
 - It should be possible to identify the entity responsible for any communication event

- Availability:
 - Services should be available and function correctly

- Controlled Access:
 - Only authorized entities should be able to access certain services or information
What is a threat in a communication network?

• Abstract Definition:
 – A *threat* in a communication network is any possible event or sequence of actions that might lead to a violation of one or more *security goals*
 – The actual realization of a threat is called an *attack*

• Examples:
 – A hacker breaking into a corporate computer
 – Disclosure of emails in transit
 – Someone changing financial accounting data
 – A hacker temporarily shutting down a website
 – Someone using services or ordering goods in the name of others
Threats technically defined

- **Masquerade:**
 - An entity claims to be another entity

- **Eavesdropping:**
 - An entity reads information it is not intended to read

- **Authorization Violation:**
 - An entity uses a service or resources it is not intended to use

- **Loss or Modification of (transmitted) Information:**
 - Data is being altered or destroyed

- **Denial of Communication Acts (Repudiation):**
 - An entity falsely denies its’ participation in a communication act

- ** Forgery of Information:**
 - An entity creates new information in the name of another entity

- **Sabotage:**
 - Any action that aims to reduce the availability and / or correct functioning of services or systems
Threats and technical security goals

<table>
<thead>
<tr>
<th>Technical Security Goals</th>
<th>General Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Masquerade</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>x</td>
</tr>
<tr>
<td>Data Integrity</td>
<td>x</td>
</tr>
<tr>
<td>Accountability</td>
<td>x</td>
</tr>
<tr>
<td>Availability</td>
<td>x</td>
</tr>
<tr>
<td>Controlled Access</td>
<td>x</td>
</tr>
</tbody>
</table>

These threats are often combined in order to perform an attack!
Safeguards Against Information Security Threats 1

- **Physical Security:**
 - Locks or other physical access control
 - Tamper-proofing of sensitive equipment
 - Environmental controls

- **Personnel Security:**
 - Identification of position sensitivity
 - Employee screening processes
 - Security training and awareness

- **Administrative Security:**
 - Controlling import of foreign software
 - Procedures for investigating security breaches
 - Reviewing audit trails
 - Reviewing accountability controls

- **Emanations Security:**
 - Radio Frequency and other electromagnetic emanations controls
Safeguards Against Information Security Threats 2

• **Media Security:**
 – Safeguarding storage of information
 – Controlling marking, reproduction and destruction of information
 – Ensuring that media containing information are destroyed securely
 – Scanning media for viruses

• **Lifecycle Controls:**
 – Trusted system design, implementation, evaluation and endorsement
 – Programming standards and controls
 – Documentation controls

• **Computer Security:**
 – Protection of information while stored / processed in a computer system
 – Protection of the computing devices itself

• **Communications Security:** (the main subject of this lecture)
 – Protection of information during transport from one system to another
 – Protection of the communication infrastructure itself
Communications security: Some terminology

• Security Service:
 – An abstract service that seeks to ensure a specific security property
 – A security service can be realised with the help of cryptographic algorithms and protocols as well as with conventional means:
 • One can keep an electronic document on a floppy disk confidential by storing it on the disk in an encrypted format as well as locking away the disk in a safe
 • Usually a combination of cryptographic and other means is most effective

• Cryptographic Algorithm:
 – A mathematical transformation of input data (e.g. data, key) to output data
 – Cryptographic algorithms are used in cryptographic protocols

• Cryptographic Protocol:
 – A series of steps and message exchanges between multiple entities in order to achieve a specific security objective
Security services - Overview

• Authentication
 – The most fundamental security service which ensures, that an entity has in fact the identity it claims to have

• Integrity
 – In some kind, the “small brother” of the authentication service, as it ensures, that data created by specific entities may not be modified without detection

• Confidentiality
 – The most popular security service, ensuring secrecy of protected data

• Access Control
 – Controls that each identity accesses only those services and information it is entitled to

• Non-Repudiation
 – Protects against that entities participating in a communication exchange can later falsely deny that the exchange occurred
Cryptology - Definition and terminology

• Cryptology:
 – Science concerned with communications in secure and usually secret form
 – The term is derived from the Greek kryptós (hidden) and lógos (word)
 – Cryptology encompasses:
 • Cryptography (gráphein = to write): the study of the principles and techniques by which information can be concealed in ciphertext and later revealed by legitimate users employing a secret key
 • Cryptanalysis (analýein = to loosen, to untie): the science (and art) of recovering information from ciphers without knowledge of the key

• Cipher:
 – Method of transforming a message (plaintext) to conceal its meaning
 – Also used as synonym for the concealed ciphertext
 – The transformation usually takes the message and a (secret) key as input

(Source: Encyclopaedia Britannica)
Cryptographic algorithms

• For network security two main applications of cryptographic algorithms are of principal interest:
 – Encryption of data: transforms plaintext data into ciphertext in order to conceal its’ meaning
 – Signing of data: computes a check value or digital signature to a given plain- or ciphertext that can be verified by some or all entities being able to access the signed data
 – Some cryptographic algorithms can be used for both purposes, some are only secure and / or efficient for one of them.

• Principal categories of cryptographic algorithms:
 – Symmetric cryptography using 1 key for en-/decryption or signing/checking
 – Asymmetric cryptography using 2 different keys for en-/decryption or signing/checking
 – Cryptographic hash functions using 0 keys (the “key” is not a separate input but “appended” to or “mixed” with the data).
Symmetric encryption

- General description:
 - The same key $K_{A,B}$ is used for enciphering and deciphering of messages:

- Notation:
 - If P denotes the plaintext message $E(K_{A,B}, P)$ denotes the ciphertext and it holds $D(K_{A,B}, E(K_{A,B}, P)) = P$
 - Alternatively we sometimes write $\{P\}_{K_{A,B}}$ for $E(K_{A,B}, P)$

- Examples: DES, 3DES, IDEA, …
Asymmetric cryptography (1)

• General idea:
 – Use two different keys +K for encryption and -K for decryption
 – Given a random ciphertext c = E(+K, m) and +K it should be infeasible to compute m = D(-K, c) = D(-K, E(+K, m))
 • This implies that it should be infeasible to compute -K when given +K
 – The key -K is only known to one entity A and is called A’s private key -Kₐ
 – The key +K can be publicly announced and is called A’s public key +Kₐ
Asymmetric cryptography (2)

• Applications:
 – Encryption:
 • If B encrypts a message with A’s public key $+K_A$, he can be sure that only A can decrypt it using $-K_A$
 – Signing:
 • If A encrypts a message with his own private key $-K_A$, everyone can verify this signature by decrypting it with A’s public key $+K_A$
 – Attention:
 • It is crucial that everyone can verify that he really knows A’s public key and not the key of an adversary!

• Practical considerations:
 – Asymmetric cryptographic operations are about magnitudes slower than symmetric ones
 – Therefore, they are often not used for encrypting / signing bulk data
 – Symmetric techniques are used to encrypt / compute a cryptographic hash value and asymmetric cryptography is just used to encrypt a key / hash value
Privacy using public key

Signing a document using public key
Cryptographic Protocols

• Definition:
 A cryptographic protocol is defined as a series of steps and message exchanges between multiple entities in order to achieve a specific security objective.

• Applications of cryptographic protocols:
 – Key exchange
 – Authentication
 • Data origin authentication: the security service, that enables a receiver to verify by whom a message was created and that it has not been modified
 • Entity authentication: the security service, that enables communication partners to verify the identity of their peer entities
 – Combined authentication and key exchange
Security Problems of the Internet Protocol

• When an entity receives an IP packet, it has no assurance of:

 – *Data origin authentication / data integrity:*
 • The packet has actually been sent by the entity which is referenced by the source address of the packet
 • The packet contains the original content the sender placed into it, so that it has not been modified during transport
 • The receiving entity is in fact the entity to which the sender wanted to send the packet

 – *Confidentiality:*
 • The original data was not inspected by a third party while the packet was sent from the sender to the receiver
Security Objectives of IPSec

• IPSec aims to ensure the following security objectives:

 – *Data origin authentication / connectionless data integrity:*

 • It is not possible to send an IP datagram with neither a masqueraded IP source nor destination address without the receiver being able to detect this

 • It is not possible to modify an IP datagram in transit, without the receiver being able to detect the modification

 • *Replay protection:* it is not possible to later replay a recorded IP packet without the receiver being able to detect this

 – *Confidentiality:*

 • It is not possible to eavesdrop on the content of IP datagrams

 • Limited traffic flow confidentiality

• Security policy:

 – Sender, receiver and intermediate nodes can determine the required protection for an IP packet according to a local security policy

 – Intermediate nodes and the receiver will drop IP packets that do not meet these requirements
Internet firewalls

• A network firewall can be compared to a castle moat
 – It restricts people to entering at one carefully controlled point
 – It prevents attackers from getting close to other defenses
 – It restricts people to leaving at one carefully controlled point

• Usually, a network firewall is installed at a point where the protected subnetwork is connected to a less trusted network
 – Example: Connection of a corporate local area network to the Internet

 – Basically firewalls realize access control on the subnetwork level
Firewalls: Terminology (1)

- **Firewall**
 - A component or a set of components that restricts access between a protected network and the Internet or between other sets of networks

- **Packet Filtering**
 - The action a device takes to selectively control the flow of data to and from a network
 - Packet filtering is an important technique to implement access control on the subnetwork-level for packet oriented networks, e.g. the Internet
 - A synonym for packet filtering is screening

- **Bastion Host**
 - A computer that must be highly secured because it is more vulnerable to attacks than other hosts on a subnetwork
 - A bastion host in a firewall is usually the main point of contact for user processes of hosts of internal networks with processes of external hosts

- **Dual-homed host**
 - A general purpose computer with at least two network interfaces
Firewalls: Terminology (2)

• **Proxy:**
 - A program that deals with external servers on behalf of internal clients
 - Proxies relay approved client requests to real servers and also relay the servers’ answers back to the clients

• **Network Address Translation (NAT):**
 - A procedure by which a router changes data in packets to modify the network addresses
 - This allows to conceal the internal network addresses (even though NAT is not actually a security technique)

• **Perimeter Network:**
 - A subnetwork added between an external and an internal network, in order to provide an additional layer of security
 - A synonym for perimeter network is de-militarized zone (DMZ)
Firewalls architecture: Simple packet filter

- The most simple architecture just consists of a packet filtering router

- It can be either realized with:
 - A standard workstation (e.g. Linux PC) with at least two network interfaces plus routing and filtering software
 - A dedicated router device, which usually also offers filtering capabilities
Firewall architecture: Screened host

- **The packet filter:**
 - Allows permitted IP traffic between the screened host and the Internet
 - Blocks all direct traffic between other internal hosts and the Internet

- **The screened host provides proxy services:**
 - Despite partial protection by the packet filter the screened host acts as a bastion host
Firewall architecture: Screened subnet

- A perimeter network is created between two packet filters.
- The inner packet filter serves as additional protection in case the bastion host is ever compromised.
 - For example, this avoids a compromised bastion host to sniff on internal traffic.
- The perimeter network is also a good place to host a publicly accessible information server, e.g. a WWW server.
Firewalls: Packet filtering

• What can be done with packet filtering?
 – Theoretically speaking everything, as all information exchanged in a communication relation is transported via packets
 – In practice, efficiency tradeoffs against proxy approaches have to be considered

• Basic packet filtering enables to control data transfer based on:
 – Source IP Address
 – Destination IP Address
 – Transport protocol
 – Source and destination application port
 – Potentially, specific protocol flags (e.g. TCP’s ACK- and SYN-flag)
 – The network interface a packet has been received on
Firewalls: An example packet filtering ruleset

- This ruleset specifies that incoming and outgoing email is the only allowed traffic into and out of a protected network
 - Email is relayed between two servers by transferring it to an SMTP daemon on the target server (server port 25, client port > 1023)
 - Rule A allows incoming email to flow to the bastion host and rule B allows the bastion host’s acknowledgements to exit the network
 - Rules C and D are analogous for outgoing email
 - Rule E denies all other traffic

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Inbound</td>
<td>External</td>
<td>Bastion</td>
<td>TCP</td>
<td>>1023</td>
<td>25</td>
<td>Any</td>
<td>Permit</td>
</tr>
<tr>
<td>B</td>
<td>Outbound</td>
<td>Bastion</td>
<td>External</td>
<td>TCP</td>
<td>25</td>
<td>>1023</td>
<td>Yes</td>
<td>Permit</td>
</tr>
<tr>
<td>C</td>
<td>Outbound</td>
<td>Bastion</td>
<td>External</td>
<td>TCP</td>
<td>>1023</td>
<td>25</td>
<td>Any</td>
<td>Permit</td>
</tr>
<tr>
<td>D</td>
<td>Inbound</td>
<td>External</td>
<td>Bastion</td>
<td>TCP</td>
<td>25</td>
<td>>1023</td>
<td>Yes</td>
<td>Permit</td>
</tr>
<tr>
<td>E</td>
<td>Either</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
</tbody>
</table>