REVIEW SESSION 12107105

- $x[\mu]=x^{*}\left[N_{-\mu}\right]$ if $X[k]$ real

Supp ore $X[k]$ is real. Then $X[k]=X^{*}[k]$ (a mb is real ff it is equal to its conjugate')

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k u}{N}}=X^{*}[k]=\sum_{n=0}^{N-1} x^{*}[n] e^{+j \frac{2 \pi k n}{N}} \\
& \sum_{n=0}^{N-1} x^{*}[n] e^{-j \frac{2 \pi k n}{N}}=x^{*}[0]+\sum_{n=1}^{N-1} x^{*}[n] e^{+j \frac{2 \pi k n}{N}} \\
& =n^{*}[0]+\sum_{n^{\prime}=1}^{N-1} \lambda^{*}\left[N-n^{\prime}\right] e^{+j \frac{2 \pi k\left(N-n^{\prime}\right)}{N}} \\
& =e^{+j \frac{2 \pi h N}{N}} e^{-j^{2 \pi h} \frac{\mu^{\prime}}{N}} \\
& =\underbrace{e^{+j \frac{2 \pi h N}{N}}}_{1} \cdot e^{-j \frac{2 \pi h \mu^{\prime}}{N}}
\end{aligned}
$$

Thus $X^{*}[k]=x^{*}[0]+\sum_{n=1}^{N-1} x^{\nu}[N-n] e^{-j \frac{2 \pi k n}{N}}=\sum_{n=0}^{N-1} n[n] e^{-j \frac{2 \pi h n}{N}}$
We have: $\left\{\begin{array}{l}\left.x[0]=x^{2}[0]=x^{y}[((N-0)))_{N}\right] \\ x[x]=x^{*}[N-x] \text { fo } 1 \leq n \leq N-1\end{array}\right.$
The problem sous $x_{1}[x]=x_{1}[N-x]$. It should be $\left.x_{1}[n]=x_{1}[(N-x))_{N}\right]$ There is an "abuse of nation", hut it is not too confurnig!
If you nuppse $x[\mu]=x^{\nu}[N-n]$, you can prove similarly that $X[k]=X^{y}[k]$.
This will complete the proof that $\lambda[\mu]=\lambda^{*}[N-n]$.ff $X[k]$ real

- Decompos a fiuite sequance into real and oeld part
let $\lambda[-]$ finite longth requence: $x[x]=0$ if $u<0 \quad a \quad n>N-1$
Define $\quad\left\{\begin{array}{l}x_{e p}[n]=\frac{1}{2}\left(x[n]+\lambda^{*}[N-n]\right) \quad 1 \leq n \leq N-1 \\ x_{e p}[0]=\operatorname{Re}(n[0])\end{array}\right.$

$$
\left\{\begin{array}{l}
x_{o p}[n]=\frac{1}{2}\left(x[n]-x^{2}[N-x)\right) \\
x_{o p}[0]=j \operatorname{Irn}(x[0])
\end{array}\right.
$$

Equivalently, we combd defue: $x_{e p}[\mu]=\frac{1}{2}\left(x[\mu]+x^{2}[((N-x)), N]\right)$
$\left.f_{r} \mu=0, x_{e p}(\mu]=\frac{1}{2}\left(x[0]+x^{x}[(N)) N\right]\right)=\frac{1}{2}\left(x[0]+x^{-1}[0]\right)=\operatorname{Re}(x[0])$

$$
\begin{aligned}
x_{e p}[N-n]^{*} & =\left(\frac{1}{2}\left(n[N-n]+x^{*}[N-(N-n)]\right)^{*} \quad f \quad 1 \leq n \leq N-1\right. \\
& =\frac{1}{2}\left(x[\mu]+\lambda^{*}[N-n]\right) \quad \text { pr } 1 \leq n \leq N-1 \\
x_{e p}[0]^{*} & =R[n[0])^{*}=\operatorname{Re}(x[0])
\end{aligned}
$$

Thus, we have $x_{e p}[n]=x_{0 p}^{*}\left[((N-n))_{N}\right] \Rightarrow X_{e p}[k]$ is real
We can show smulanly that $X_{o p}[k]$ is ninagniary
Since $x[\mu]=\operatorname{se}(\alpha \operatorname{lon}])$ angitatar $[a x)=x_{e p}[\mu]+x_{o p}[\mu]$

$$
\left.\Rightarrow \begin{array}{l}
X[k]=\underbrace{X_{e p}[h]}_{\text {eal }}+\underbrace{X_{0 p}[k]}_{\text {minginury }} \\
X[k]=\underbrace{R_{e} X[h]}_{\text {real }}+\underbrace{j \operatorname{Im} X[k]}_{\text {minagney }}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
X_{e p}[h]=\operatorname{Re} X[k] \\
X_{o p}[h]=j \operatorname{In} X[k]
\end{array}\right.
$$

- Nb of altemation - Parks teclellan alganithm

no altenations at $0 \Rightarrow L+2$ case

Alerenations at 0 and π. It can be $L+2 \Omega$ $L+3$ (eretraripple cax). You cannor find out withour funther infornation. In an ecaum puoben it mould be openfied whether it is $L+2 \Omega L+3$

- Upranplurg-Downraumpluig

Are thex 2 sptens equralent: $\frac{x_{1}[n]}{x_{2}[n]}$ (111)$\frac{y_{2}(n)}{(111)}$
$x_{2}(\omega)$ (MN) $y_{2}(\omega)$ (My) $z_{2}(\omega)$

$$
\begin{aligned}
& * Y_{1}\left(e^{j \omega}\right)=\frac{1}{M} \sum_{i=0}^{n-1} X_{1}\left(e^{j \frac{\omega-2 \pi i}{M}}\right) \\
& Z_{1}\left(e^{j \omega}\right)=Y_{1}\left(e^{j \mu \omega}\right)=\frac{1}{M} \sum_{i=0}^{M-1} X_{1}\left(e^{j \frac{M \omega-2 \pi i}{M}}\right)=\frac{1}{M} \sum_{i=0}^{M-1} X_{1}\left(e^{j \omega-\frac{2 \pi}{M}}\right) \\
& +y_{2}\left(e^{j \omega}\right)=x_{2}\left(e^{j(\omega)}\right) \\
& z_{2}\left(e^{j \omega}\right)=\frac{1}{M} \sum_{i=0}^{M-1} Y_{2}\left(e^{j \frac{\omega-\pi i i}{M}}\right)=\frac{1}{M} \sum_{i=0}^{M-1} X_{2}\left(e^{j \cdot \frac{\omega-2 \pi i}{M}}\right)
\end{aligned}
$$

The 2 mptems me not equiraleur!
One can parve

$$
\xrightarrow{x[n]}(2 \downarrow \rightarrow 2 \uparrow \rightarrow y[m)
$$

Sketch $y(w)$
Frow what we sour pruiourly: $X(\omega)=\frac{1}{2}(X(\omega)+X(\omega-\pi))$

$$
\Rightarrow
$$

- Under what conditions on $x[m]$ do we have $x[m]=y[\mu]$?

You need $\quad x(\omega)=x(\omega-\pi)$

$$
\begin{aligned}
& x(\omega)=x(\omega-\pi) \\
&=\sum_{n} x[-1)^{n} x[n) e^{-j \omega n}
\end{aligned}=\sum_{n} x[n] e^{-j(\omega-\pi) n} .
$$

$\Rightarrow \quad \forall n, \quad x[m]=(-1)^{n} x[m]$
This st tire $f x[u]=0$ when u is odd!

- Problem 8.50 a from HW HS

$$
\begin{aligned}
& x[n]=1+\cos \frac{\pi m}{4}-\frac{1}{2} \cos \frac{3 \pi m}{4} \text { A } 0 \leqslant n \leqslant 7 . \\
& X_{8}[k]=\sum_{n=0}^{8-1} x[n] w_{8}^{n k}=\sum_{n=0}^{8-1} x[m] e^{-j \frac{2 \pi m k}{8}}=x[0]+x[1] e^{-j \frac{\pi n}{n}}+x[2] e^{-j \frac{\pi n u}{n}}+x[3] e^{-\frac{\pi j n}{4}}+\cdots+\cdots[7] e^{-j \frac{\pi 7 n}{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Also, we have: } \\
& \begin{aligned}
x[n] & =\frac{1}{8} \sum_{n=0}^{7} X_{8}[k] e^{+j \frac{2 \pi n k}{8}}=\frac{1}{8} \sum_{k=0}^{7} X_{8}[k] e^{j \frac{\pi n k}{4}} \\
& =\frac{1}{8} X_{8}[0]+\frac{1}{8} X_{8}[1] e^{j \frac{\pi n}{4} n}+\frac{1}{8} X_{8}[2] e^{j \frac{\pi \frac{\pi}{4}}{4}}+\frac{1}{8} X_{8}[3] e^{j \frac{\pi 3 n}{4}}+\cdots \cdot
\end{aligned}+\cdots+\frac{1}{8} X_{8}[7] e^{j \frac{77 n}{4}}
\end{aligned}
$$

we will identify this erppesion to $x[n]$ to first the $X_{r}[k]$ coffrenents.

$$
\begin{array}{r}
x[\mu]=1+\frac{1}{2}\left(e^{j \frac{\pi \mu}{4}}+e^{-j \frac{\pi \mu}{4}}\right)-\frac{1}{2} \cdot \frac{1}{2}\left(e^{j \frac{3 \pi \mu}{4}}+e^{-j \frac{3 \pi \mu}{4}}\right) \\
e^{-j \frac{\pi \mu}{4}}=\left(e^{-j \frac{\pi h}{4}}\right)^{n}=\left(e^{j \frac{7 \pi}{4}}\right)^{n}=e^{j \frac{\pi 7 \mu}{4}}
\end{array}
$$

Similarly, $=e^{-j \frac{3 \pi}{4}}=e^{j \frac{5 \pi}{4}}$

$$
\begin{aligned}
& \Rightarrow x[\mu]=\underset{\sim}{1}+\frac{1}{2} e^{j \frac{\pi \mu}{4}}-\frac{1}{4} e^{j \frac{j \pi \mu}{4}}-\frac{1}{4} e^{j \frac{5 \pi \mu}{4}}+\frac{1}{2} e^{j \frac{j 7 \pi}{4}} \\
& \frac{1}{8} x_{2}[7] \underbrace{}_{\frac{1}{8} x_{8}[3]} x_{\frac{1}{8}} x_{8}[5] x_{\frac{1}{8}} x_{8}[7]
\end{aligned}
$$

- Kassa Window r

there are your specs. You dongs you filter unnig a Kaiser window with parameter δ.
This will produce ripples of masnimum amplitude 3δ Thus, you have to make sure that 3δ is less than what you pes allow.

