EE123 Review Session Wednesday Od $1^{\text {th }}$
the is what I did for those of you who couldn't make it!

- Problem 6 in Mudtam I Rear

Clarfication for the solution of @
sample $x_{a}(t)$ at $T=1 \rightarrow x_{1}[m]=n_{a}(\mu)$

$$
\underbrace{x_{a}\left(t+\frac{1}{4}\right)} \rightarrow x_{2}[n]=x_{a}\left(x+\frac{1}{4}\right)
$$

call this $y_{a}(t)$. It is a shift in tire of $x_{a}(t)$ (~ 0 modulation in frequency domain)

$$
X_{2}(\omega)=\sum_{k \in \mathbb{Z}} Y_{a}(j((a)+2 \pi k))
$$

we have $\left.Y_{a}(j \Omega)=e^{j \frac{\Omega}{4}} X_{a} C_{j} \Omega\right)$, so $X_{2}(\omega)=\sum_{k \in \mathbb{Z}} e^{j \frac{\omega+2 \pi k}{4}} X_{a}(j(\omega+2 \pi k))$

- Problem 4.21
Θ is easy
(b) Look at the formula $X\left(e^{j \omega}\right)=\frac{1}{T} \sum_{k \in \mathbb{Z}} X_{c}\left(j \frac{\omega-2 \pi k}{T}\right)$

To obtain $X\left(e^{j u}\right)$, we "stitch" $X_{c}(j \Omega)$ and "shift it" periodically.
Alaniy occurs in the "slufting" part (if it occurs...)

$$
X_{c}(j \Omega) \xrightarrow{\int_{i}} \xrightarrow{\text { shift }} \sum_{k \in \mathbb{Z}} X_{c}\left(j \Omega+\frac{2 \pi k}{T}\right) \xrightarrow[\Omega=\frac{\omega}{T}]{\text { direth }} \sum_{k \in \mathbb{Z}} X_{c}\left(j\left(\frac{\omega+2 \pi k}{T}\right)\right)
$$

this function is $\frac{2 \pi}{T}$ pervodic
Let's go back to on $p b$.

$\underline{\Omega}$

Thus, to avvid aliany, we need $\Omega_{2}-\frac{2 \pi}{T}<\Omega_{1} \Rightarrow \frac{2 \pi}{T}>\Delta \Omega$

- Disuct, time procinig of continnons tive mptem

I banzally went oren p. 155 in the book.

- quantization

Given a thansfer functior $H(z)$, there ove wany realizations (drict fon II II Cascade, ak ...) quartization well affect $H(z)$ differently with spect to vanoins realizatiois.
Ex $H(z)=\frac{z^{-1}-a}{1-a z^{-1}}$ realization': $\underset{n(\mu)}{d}{\underset{b}{x}+\left(z^{-1}\right.}_{c}^{c} y(\sim)$
this courgonds to $H(z)=\frac{d c z^{-1}+d}{1-6 z^{-1}}$
So take $d=-a, b=a, c=\frac{-1}{a}$ to get $\frac{z^{-1}-a}{1-a z^{-1}}$

After quantization, jet $H_{0}(z)=\frac{\hat{d} \hat{c} z^{-1}+\hat{d}}{1-\hat{b} z^{-1}} \quad 3$ different unubes are quantized.
Realization?:

After quantization $H_{0^{\prime}}(z)=\frac{z^{-1}-\hat{a}}{1-\hat{a} z^{-1}}$

In general, $H_{Q}(z) \neq H_{Q^{\prime}}(z)$!
$H_{e^{\prime}}(z)$ looks anne like $H(z)$ (Or is actually an all-pan fitch as well) Thus you rught prefer realization 2 to realization. However, (2) has 2 delays and c_{1}) only $1 \longrightarrow$ trade off.

