

Motivations for Discrete Fourier Transform

Sampled representation in time and frequency

- Numerical Fourier analysis requires a Fourier representation that is sampled in time and frequency
- Sampling in one domain corresponds to periodicity in the other domain
- Hence, we want a representation that is discrete and period in both time and frequency.
- This is the discrete-time Fourier series or, equivalently, the discrete Fourier transform.
- However, we are often dealing with signals that are not periodic, but still using the DFT. This requires special considerations.

Discrete Fourier Series

Definition

- Consider N-periodic signal:

$$
\tilde{x}[n+N]=\tilde{x}[n] \quad \forall n
$$

and its frequency-domain representation, which is also N-periodic:

$$
\tilde{X}[k+N]=\tilde{X}[k] \quad \forall k
$$

The "~" will indicate a periodic signal or spectrum.

Discrete Fourier Series

Discrete Fourier Transform

- By convention, work with one period of $\tilde{x}[n]$ and $\tilde{X}[k]$:

$$
\begin{aligned}
& x[n] \triangleq \begin{cases}\tilde{x}[n] & 0 \leq n \leq N-1 \\
0 & \text { otherwise }\end{cases} \\
& x[k] \triangleq \begin{cases}\tilde{x}[k] & 0 \leq k \leq N-1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

From these, if desired, we can recover the periodic representations:

$$
\begin{aligned}
& \tilde{x}[n]=x\left[((n))_{N}\right]=\sum_{r=-\infty}^{\infty} x[n-r N] \\
& \tilde{X}[k]=X\left[((k))_{N}\right]=\sum_{r=-\infty}^{\infty} X[k-r N]
\end{aligned}
$$

where $((n))_{N} \triangleq n \bmod N$

Alternative transform not in the book:

Orthonormal DFT

$$
\begin{aligned}
& x[n]=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x[k] W_{n}^{-k n} \\
& \text { Inverse DFT, synthesis } \\
& X[k]=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] W_{n}^{k n} \\
& \text { DFT, analysis }
\end{aligned}
$$

Why use this or the other?

$$
\begin{aligned}
x[n] & =0 & & \text { outside } 0 \leq n \leq N-1 \\
X[k] & =0 & & \text { outside } 0 \leq k \leq N-1
\end{aligned}
$$

DFS vs DFT

- This figure compares the periodic signal and its DFS, $\tilde{x}[n] \stackrel{\text { DFS }}{\leftrightarrow} \tilde{X}[k]$, to the corresponding one-period signal and its DFT, $x[n] \stackrel{\text { DFT }}{\leftrightarrow} X[k]$

DFT Continued

Q: What if we take $N=10$?
$\mathrm{A}: X[k]=\tilde{X}[k]$ where $\tilde{x}[n]$ is a period-10 sequence

Can show:

$$
\begin{aligned}
X[k] & =\left\{\begin{array}{cc}
\sum_{n=0}^{9} W_{9}^{n k} & k=0,1,2,3,4 \\
0 & \text { otherwise }
\end{array}\right. \\
& =e^{-j \frac{4 \pi}{10} k \frac{\sin \left(\frac{\pi}{2} k\right)}{\sin \left(\frac{\pi}{10} k\right)}}
\end{aligned}
$$

"10-point DFT"

DFT Continued

- Example:

Take $N=5$

$$
\begin{aligned}
X[k] & =\left\{\begin{array}{cc}
\sum_{n=0}^{4} W_{4}^{n k} & k=0,1,2,3,4 \\
0 & \text { otherwise }
\end{array}\right. \\
& =5 \delta[k]
\end{aligned}
$$

"5-point DFT"
What if we take $N=10$?

DFT vs DTFT

- The DFT and the DTFT

The N-point DFT of $x[n]$ is
$X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) n k} \quad 0 \leq k \leq N-1$
The DTFT of $x[n]$ is

$$
X\left(e^{j \omega}\right)=\sum_{n=0}^{N-1} x[n] e^{-j \omega n} \quad-\infty<\omega<\infty
$$

Comparing these two, we see that the DFT $X[k]$ corresponds to the DTFT $X\left(e^{j \omega}\right)$ sampled at N equally spaced frequencies between 0 and 2π :

$$
X[k]=\left.X\left(e^{j \omega}\right)\right|_{\omega=k \frac{2 \pi}{N}} \quad 0 \leq k \leq N-1
$$

DFT vs DTFT

- Back to example:

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =\sum_{n=0}^{4} e^{-j \omega n} \\
& =e^{-j 2 \omega} \frac{\sin \left(\frac{5}{2} \omega\right)}{\sin \left(\frac{\omega}{2}\right)}
\end{aligned}
$$

DFT and IDFT

Combining these two expressions

$$
\mathcal{D} \mathcal{F} \mathcal{T}\left\{X^{*}[k]\right\}=N\left(\mathcal{D} \mathcal{F}^{-1}\{X[k]\}\right)^{*}
$$

or

$$
\mathcal{D F} \mathcal{T}^{-1}\{X[k]\}=\frac{1}{N}\left(\mathcal{D} \mathcal{F} \mathcal{T}\left\{X^{*}[k]\right\}\right)^{*}
$$

We can evaluate the inverse DFT by

- Taking the complex conjugate,
- Taking the DFT,
- Multiplying by $\frac{1}{N}$, and
- Taking the complex conjugate.

DFT and IDFT

- Note that the DFT and the inverse DFT are computed in very similar fashion.
If we write $x[n]$ as the inverse DFT of $X[k]$, multiply by N and take the complex conjugate:

$$
\begin{aligned}
N \cdot x^{*}[n] & =N\left(\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}\right)^{*} \\
& =\sum_{k=0}^{N-1} X^{*}[k] W_{N}^{k n} \\
& =\mathcal{D} \mathcal{F} \mathcal{T}\left\{X^{*}[k]\right\}
\end{aligned}
$$

However, we also know that

$$
N \cdot x^{*}[n]=N\left(\mathcal{D} \mathcal{F} \mathcal{T}^{-1}\{X[k]\}\right)^{*}
$$

DFT as Matrix operator

- Note that the definition of the DFT and its inverse are equivalent to matrix equations
$\left(\begin{array}{c}x[0] \\ \vdots \\ x[k] \\ \vdots \\ x[N-1]\end{array}\right)=\left(\begin{array}{ccccc}w_{N}^{00} & \cdots & w_{N}^{0 n} & \cdots & w_{N}^{0(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ w_{N}^{k 0} & \cdots & w_{N}^{k n} & \cdots & w_{N}^{k(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ w_{N}^{(N-1) 0} & \cdots & w_{N}^{(N-1) n} & \cdots & w_{N}^{(N-1)(N-1)}\end{array}\right)\left(\begin{array}{c}x[0] \\ \vdots \\ x[n] \\ \vdots \\ x[N-1]\end{array}\right)$
$\left(\begin{array}{c}x[0] \\ \vdots \\ \times[n] \\ \vdots \\ x[N-1]\end{array}\right)=\frac{1}{N}\left(\begin{array}{ccccc}w_{N}^{-00} & \cdots & w_{N}^{-0 k} & \cdots & w_{N}^{-0(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ w_{N}^{-n 0} & \cdots & w_{N}^{-n k} & \cdots & w_{N}^{-n(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ w_{N}^{-(N-1) 0} & \cdots & w_{N}^{-(N-1) k} & \cdots & w_{N}^{-(N-1)(N-1)}\end{array}\right)\left(\begin{array}{c}x[0] \\ \vdots \\ x[k] \\ \vdots \\ x[N-1]\end{array}\right)$
This shows that straightforward computation of the N-point DFT or inverse DFT requires N^{2} complex multiplies.

DFT as Matrix operator

We can write this much more compactly as a matrix equation,

$$
\begin{aligned}
\mathbf{X} & =\mathbf{W}_{N} \mathbf{x} \\
\mathbf{x} & =\frac{1}{N} \mathbf{W}_{N}^{*} \mathbf{X}
\end{aligned}
$$

\mathbf{W}_{N} is the DFT coefficient matrix, and \mathbf{x} and \mathbf{X} are column vectors containing $x[n]$ and $X[k]$, and " $*$ " is the conjugate transpose.
Note that since the columns and rows of \mathbf{W}_{N} are orthogonal, and

$$
\mathbf{W}_{N} \mathbf{W}_{N}^{*}=\mathbf{W}_{N}^{*} \mathbf{W}_{N}=N \mathcal{I}
$$

where \mathcal{I} is the identity matrix. Then

$$
\mathbf{x}=\frac{1}{N} \mathbf{W}_{N}^{*} \mathbf{X}=\frac{1}{N} \mathbf{W}_{N}^{*} \mathbf{W}_{N} \mathbf{x}=\frac{1}{N}(N \mathcal{I}) \mathbf{x}=\mathbf{x}
$$

as we would expect.

Properties of Discrete Fourier Transform Cont.

(3) Circular Frequency Shift

$$
x[n] e^{j(2 \pi / N) n \prime}=x[n] W_{N}^{-n \prime} \leftrightarrow X\left[((k-l))_{N}\right]
$$

(4) Complex Conjugation

$$
x^{*}[n] \leftrightarrow X^{*}\left[((-k))_{N}\right]
$$

(5) Time Reversal and Complex Conjugation

$$
x^{*}\left[((-n))_{N}\right] \leftrightarrow X^{*}[k]
$$

(6) Conjugate Symmetry for Real Signals

$$
x[n]=x^{*}[n] \leftrightarrow X[k]=X^{*}\left[((-k))_{N}\right]
$$

Properties of Discrete Fourier Transform Cont.

(7) Parseval's Identity

$$
\sum_{n=0}^{N-1}|x[n]|^{2}=\frac{1}{N} \sum_{k=0}^{N-1}|X[k]|^{2}
$$

Proof.

This is particularly easy using the matrix notation

$$
\mathbf{x}^{*} \mathbf{x}=\left(\frac{1}{N} \mathbf{W}_{N}^{*} \mathbf{X}\right)^{*}\left(\frac{1}{N} \mathbf{W}_{N}^{*} \mathbf{X}\right)=\frac{1}{N^{2}} \mathbf{X}^{*} \underbrace{\mathbf{W}_{N} \mathbf{W}_{N}^{*}}_{N \cdot \mathbf{I}} \mathbf{X}=\frac{1}{N} \mathbf{X}^{*} \mathbf{X}
$$

Circular Convolution Sum

- The circular convolution between $x_{1}[n]$ and $x_{2}[n]$ is same as one period of the periodic convolution between the corresponding periodic sequences $\tilde{x}_{1}[n]$ and $\tilde{x}_{2}[n]$:

$$
x_{1}[n] ® x_{2}[n]= \begin{cases}\sum_{m=0}^{N-1} \tilde{x}_{1}[m] \tilde{x}_{2}[n-m] & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}
$$

This is illustrated in below:

Linear Convolution using the DFT

We start with two nonperiodic sequences:

$$
\begin{array}{ll}
x[n] & 0 \leq n \leq L-1 \\
h[n] & 0 \leq n \leq P-1
\end{array}
$$

We can think of $x[n]$ as a signal, and $h[n]$ as a filter inpulse response.
We want to compute the linear convolution:

$$
y[n]=x[n] * h[n]=\sum_{m=0}^{L-1} x[m] * h[n-m]=\sum_{m=0}^{P-1} x[n-m] h[m]
$$

$y[n]=x[n] * h[n]$ is nonzero only for $0 \leq n \leq L+P-2$, and is of length $L+P-1=M$.

Linear Convolution using the DFT

- Both zero-padded sequences $x_{\mathrm{zp}}[n]$ and $h_{\mathrm{zp}}[n]$ are of length $M=L+P-1$
- We can compute the linear convolution $x[n] * h[n]=y[n]$ by computing circular convolution $x_{\mathrm{zp}}[n] \oplus h_{\mathrm{zp}}[n]$:

Linear convolution via circular

$$
y[n]=x[n] * y[n]= \begin{cases}x_{\mathrm{zp}}[n] @ h_{\mathrm{zp}}[n] & 0 \leq n \leq M-1 \\ 0 & \text { otherwise }\end{cases}
$$

Linear Convolution using the DFT

Example

$$
L=P=4 \quad M=L+P-1=7
$$

For $0 \leq n \leq 6, x_{z p}[n]\left(\neg h_{z p}[n]=x[n] * h[n]\right.$

- In practice, the circular convolution is implemented using the DFT circular convolution property:

$$
\begin{aligned}
x[n] * h[n] & =x_{z p}[n] ® h_{z p}[n] \\
& =\mathcal{D} \mathcal{F} \mathcal{T}^{-1}\left\{D F T x_{z p}[n] \cdot \mathcal{D F} \mathcal{F}\left\{h_{z p}[n]\right\}\right\}
\end{aligned}
$$

for $0 \leq n \leq M-1, M=L+P-1$.

- Advantage: This can be more efficient than direct linear convolution because the FFT and inverse FFT are $O\left(M \cdot \log _{2} M\right)$.
- Drawback: We must wait until we have all of the input data. This introduces a large delay which is incompatible with real-time applications like communications.
- Approach: Break input into smaller blocks. Combine the results using 1. overlap and save or 2. overlap and add .

Block Convolution

Linear Convolution using the DFT

- In practice, the circular convolution is implemented using the DFT circular convolution property:

$$
\begin{aligned}
x[n] * h[n] & =x_{z p}[n] @ h_{z p}[n] \\
& =\mathcal{D F} \mathcal{T}^{-1}\left\{D F T x_{z p}[n] \cdot \mathcal{D} \mathcal{F} \mathcal{T}\left\{h_{z p}[n]\right\}\right\}
\end{aligned}
$$

for $0 \leq n \leq M-1, M=L+P-1$.

- Advantage: This can be more efficient than direct linear convolution because the FFT and inverse FFT are $O\left(M \cdot \log _{2} M\right)$.
- Drawback: We must wait until we have all of the input data. This introduces a large delay which is incompatible with real-time applications like communications.

Problem

An input signal $x[n]$ has very long length, which can be considered infinite.
An impulse response $h[n]$ has length P.
We want to compute the linear convolution

$$
y[n]=x[n] * h[n]
$$

using block lengths shorter than the input signal length.

Block Convolution

Example:

Overlap-Add Method

We can compute each output segment $x_{r}[n] * h[n]$ with linear convolution.
DFT-based circular convolution is usually more efficient:

- Zero-pad input segment $x_{r}[n]$ to obtain $x_{r, z \mathrm{p}}[n]$, of length N.
- Zero-pad the impulse response $h[n]$ to obtain $h_{\text {zp }}[n]$, of length N (this needs to be done only once).
- Compute each output segment using:

$$
x_{r}[n] * h[n]=\mathcal{D F} \mathcal{T}^{-1}\left\{\mathcal{D F} \mathcal{T}\left\{x_{r, z \mathrm{p}}[n]\right\} \cdot \mathcal{D F} \mathcal{T}\left\{h_{\mathrm{zp}}[n]\right\}\right\}
$$

Since output segment $x_{r}[n] * h[n]$ starts offset from its neighbor $x_{r-1}[n] * h[n]$ by L, neighboring output segments overlap at $P-1$ points.
Finally, we just add up the output segments using (1) to obtain the output.

Overlap-Add Method

We decompose the input signal $x[n]$ into non-overlapping segments $x_{r}[n]$ of length L :

$$
x_{r}[n]= \begin{cases}x[n] & r L \leq n \leq(r+1) L-1 \\ 0 & \text { otherwise }\end{cases}
$$

The input signal is the sum of these input segments:

$$
x[n]=\sum_{r=0}^{\infty} x_{r}[n]
$$

The output signal is the sum of the output segments $x_{r}[n] * h[n]$:

$$
\begin{equation*}
y[n]=x[n] * h[n]=\sum_{r=0}^{\infty} x_{r}[n] * h[n] \tag{1}
\end{equation*}
$$

Each of the output segments $x_{r}[n] * h[n]$ is of length
$N=L+P-1$.

Overlap-Add Method

Overlap-Save Method

Basic Idea
We split the input signal $x[n]$ into overlapping segments $x_{r}[n]$ of length $L+P-1$.
Perform a circular convolution of each input segment $x_{r}[n]$ with the impulse response $h[n]$, which is of length P using the DFT. Identify the L-sample portion of each circular convolution that corresponds to a linear convolution, and save it.
This is illustrated below where we have a block of L samples circularly convolved with a P sample filter.

Overlap-Save Method

