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Motivations for Discrete Fourier Transform

Sampled representation in time and frequency

Numerical Fourier analysis requires a Fourier representation
that is sampled in time and frequency
Sampling in one domain corresponds to periodicity in the
other domain
Hence, we want a representation that is discrete and period in
both time and frequency.
This is the discrete-time Fourier series or, equivalently, the
discrete Fourier transform.
However, we are often dealing with signals that are not
periodic, but still using the DFT. This requires special
considerations.
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Motivations for Discrete Fourier Transform

E�cient Implementions

Very e�cient implementations of the discrete Fourier transform
exist

Direct evaluation of DFT: O(N2)
Fast Fourier Transform (FFT) algorithms: O(N log

2

N)
FFT algorithms are most straightforward for N = 2m

MATLAB commands:
X=fft(x)

x=ifft(X)

Convolution can be implemented e�ciently using the FFT

Direct convolution: O(N2)
FFT-based convolution: O(N log

2

N)
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Discrete Fourier Series

Definition

Consider N-periodic signal:

x̃ [n + N] = x̃ [n] 8n

and its frequency-domain representation, which is also
N-periodic:

X̃ [k + N] = X̃ [k] 8k

The “~” will indicate a periodic signal or spectrum.
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Discrete Fourier Series

Define
W

N

�

= e�j2⇡/N

x̃ [n] and X̃ [k] are related by the discrete Fourier series:

x̃ [n] =
1

N

N�1X

k=0

X̃ [k]W�kn

N

X̃ [k] =
N�1X

n=0

x̃ [n]W kn

N
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Discrete Fourier Transform

By convention, work with one period of x̃ [n] and X̃ [k]:

x [n]
�

=

(
x̃ [n] 0  n  N � 1

0 otherwise

X [k]
�

=

(
X̃ [k] 0  k  N � 1

0 otherwise

From these, if desired, we can recover the periodic
representations:

x̃ [n] = x [((n))
N

] =
1X

r=�1
x [n � rN]

X̃ [k] = X [((k))
N

] =
1X

r=�1
X [k � rN]

where ((n))
N

�

= n mod N
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Discrete Fourier Transform

The discrete Fourier transform relates x [n] and X [k]:

DFT

x [n] =
1

N

N�1X

k=0

X [k]W�kn

n

Inverse DFT, synthesis

X [k] =
N�1X

n=0

x [n]W kn

n

DFT, analysis

Although not stated it explicitly, it is understood that

x [n] = 0 outside 0  n  N � 1

X [k] = 0 outside 0  k  N � 1
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Alternative transform not in the book:

Orthonormal DFT

x [n] =
1p
N

N�1X

k=0

X [k]W�kn

n

Inverse DFT, synthesis

X [k] =
1p
N

N�1X

n=0

x [n]W kn

n

DFT, analysis

Why use this or the other?
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DFS vs DFT

This figure compares the periodic signal and its DFS,

x̃ [n]
DFS$ X̃ [k], to the corresponding one-period signal and its

DFT, x [n]
DFT$ X [k]
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. . . . . .
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DFT Continued

Example:

Take N = 5

X [k] =

⇢ P
4

n=0

W nk

4

k = 0, 1, 2, 3, 4
0 otherwise

= 5�[k]

”5-point DFT ”
What if we take N = 10?
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DFT Continued

Q: What if we take N = 10?

A: X [k] = X̃ [k] where x̃ [n] is a period-10 sequence

Can show:

X [k] =

⇢ P
9

n=0

W nk

9

k = 0, 1, 2, 3, 4
0 otherwise

= e�j

4⇡
10

k

sin(⇡
2

k)

sin( ⇡
10

k)

”10-point DFT ”
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DFT vs DTFT

The DFT and the DTFT
The N-point DFT of x [n] is

X [k] =
N�1X

n=0

x [n]W kn

N

=
N�1X

n=0

x [n]e�j(2⇡/N)nk 0  k  N � 1

The DTFT of x [n] is

X (e j!) =
N�1X

n=0

x [n]e�j!n �1 < ! < 1

Comparing these two, we see that the DFT X [k] corresponds
to the DTFT X (e j!) sampled at N equally spaced frequencies
between 0 and 2⇡:

X [k] = X (e j!)|!=k

2⇡
N

0  k  N � 1
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DFT vs DTFT

Back to example:

X (e j!) =
4X

n=0

e�j!n

= e�j2! sin(
5

2

!)

sin(!
2

)
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DFT and IDFT

Note that the DFT and the inverse DFT are computed in very
similar fashion.
If we write x [n] as the inverse DFT of X [k], multiply by N
and take the complex conjugate:

N · x⇤[n] = N

 
1

N

N�1X

k=0

X [k]W�kn

N

!⇤

=
N�1X

k=0

X ⇤[k]W kn

N

= DFT {X ⇤[k]} .

However, we also know that

N · x⇤[n] = N
�
DFT �1 {X [k]}

�⇤
.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal Processing

DFT and IDFT

Combining these two expressions

DFT {X ⇤[k]} = N
�
DFT �1 {X [k]}

�⇤

or

DFT �1 {X [k]} =
1

N
(DFT {X ⇤[k]})⇤

We can evaluate the inverse DFT by

Taking the complex conjugate,

Taking the DFT,

Multiplying by 1

N

, and

Taking the complex conjugate.
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DFT as Matrix operator

Note that the definition of the DFT and its inverse are
equivalent to matrix equations
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This shows that straightforward computation of the N-point
DFT or inverse DFT requires N2 complex multiplies.
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DFT as Matrix operator

We can write this much more compactly as a matrix equation,

X = W

N

x

x =
1

N
W

⇤
N

X

W

N

is the DFT coe�cient matrix, and x and X are column vectors
containing x [n] and X [k], and “⇤” is the conjugate transpose.

Note that since the columns and rows of W
N

are orthogonal, and

W

N

W

⇤
N

= W

⇤
N

W

N

= NI

where I is the identity matrix. Then

x =
1

N
W

⇤
N

X =
1

N
W

⇤
N

W

N

x =
1

N
(NI) x = x

as we would expect.
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Properties of Discrete Fourier Transform

These are inherited from the discrete-time Fourier series (EE120)
and need not be proved
(1) Linearity

↵
1

x
1

[n] + ↵
2

x
2

[n] $ ↵
1

X
1

[k] + ↵
2

X
2

[k]

(2) Circular Time Shift

x [((n �m))
N

] $ X [k]e�j(2⇡/N)km = X [k]W km

N
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Properties of Discrete Fourier Transform Cont.

This figure compares a shift of the periodic sequence,
x̃ [n �m], to a circular shift of the one-period sequence,
x [((n �m))

N

].

! "mnx #~

n

0 1#N

. . . . . .

m

$ %$ %! "
N

mnx #

n

0 1#Nm

! "nx~

n

0 1#N

. . . . . .

! "nx

n

0 1#N

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal Processing

Properties of Discrete Fourier Transform Cont.

(3) Circular Frequency Shift

x [n]e j(2⇡/N)nl = x [n]W�nl

N

$ X [((k � l))
N

]

(4) Complex Conjugation

x⇤[n] $ X ⇤[((�k))
N

]

(5) Time Reversal and Complex Conjugation

x⇤[((�n))
N

] $ X ⇤[k]

(6) Conjugate Symmetry for Real Signals

x [n] = x⇤[n] $ X [k] = X ⇤[((�k))
N

]
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Properties of Discrete Fourier Transform Cont.

(7) Parseval’s Identity

N�1X

n=0

|x [n]|2 = 1

N

N�1X

k=0

|X [k]|2

Proof.

This is particularly easy using the matrix notation

x

⇤
x =

✓
1

N
W

⇤
N

X

◆⇤✓ 1

N
W

⇤
N

X

◆
=

1

N2

X

⇤
W

N

W

⇤
N| {z }

N·I

X =
1

N
X

⇤
X
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Circular Convolution Sum

Let x
1

[n] and x
2

[n] be of length N.

The circular convolution between x
1

[n] and x
2

[n] is defined as:

x
1

[n]�N x
2

[n]
�

=
N�1X

m=0

x
1

[m]x
2

[((n �m))
N

]

Note that circular convolution is commutative:

x
2

[n]�N x
1

[n] = x
1

[n]�N x
2

[n]
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Circular Convolution Sum

The circular convolution between x
1

[n] and x
2

[n] is same as
one period of the periodic convolution between the
corresponding periodic sequences x̃

1

[n] and x̃
2

[n]:

x
1

[n]�N x
2

[n] =

(P
N�1

m=0

x̃
1

[m]x̃
2

[n �m] 0  n  N � 1

0 otherwise

This is illustrated in below:

! " ! "#
$

%
$

1

0
21

~~N

m
mnxmx

n

0 1$N

. . . . . .

! " ! "nxnx N
21 O

n

0 1$N

n

! " ! "nxnx
21

~~ %

0 1$N

. . . . . .

0 1$N

. . . . . .

! " ! "nxnx
21

%
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Properties of Discrete Fourier Transform Cont.

(8) Circular Convolution Let x
1

[n] and x
2

[n] be of length N

x
1

[n]�N x
2

[n] $ X
1

[k] · X
2

[k]

This property is very useful for DFT-based convolution.

(9) Multiplication Let x
1

[n] and x
2

[n] be of length N

x
1

[n] · x
2

[n] $ 1

N
X
1

[k]�N X
2

[k]
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Linear Convolution using the DFT

We start with two nonperiodic sequences:

x [n] 0  n  L� 1
h[n] 0  n  P � 1

We can think of x [n] as a signal, and h[n] as a filter inpulse
response.
We want to compute the linear convolution:

y [n] = x [n] ⇤ h[n] =
L�1X

m=0

x [m] ⇤ h[n �m] =
P�1X

m=0

x [n �m]h[m]

y [n] = x [n] ⇤ h[n] is nonzero only for 0  n  L+ P � 2, and is of
length L+ P � 1 = M.
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Linear Convolution using the DFT

We will look at two approaches for computing y [n]:

(1) Direct Convolution

Evaluate the convolution sum directly.

This requires L · P multiplications

(2) Using Circular Convolution
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Linear Convolution using the DFT

(2) Using Circular Convolution

Zero-pad x [n] by P � 1 zeros:

x
zp

[n] =

(
x [n] 0  n  L� 1

0 L  n  L+ P � 2

Zero-pad h[n] by L� 1 zeros:

h
zp

[n] =

(
h[n] 0  n  P � 1

0 P  n  L+ P � 2

Both zero-padded sequences x
zp

[n] and h
zp

[n] are of length
M = L+ P � 1
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Linear Convolution using the DFT

Both zero-padded sequences x
zp

[n] and h
zp

[n] are of length
M = L+ P � 1

We can compute the linear convolution x [n] ⇤ h[n] = y [n] by
computing circular convolution x

zp

[n]�M h
zp

[n]:

Linear convolution via circular

y [n] = x [n] ⇤ y [n] =
(
x
zp

[n]�M h
zp

[n] 0  n  M � 1

0 otherwise
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Linear Convolution using the DFT

Example

L = P = 4 M = L+ P � 1 = 7

nx

n
0 3

1

1 2

nh

n
0 3

1

1 2

n
0 3

1

1 2

nxzp

64 5
n

0 3

1

1 2

nhzp

64 5

For 0 n 6, xzp[n] 7 hzp[n] = x[n] * h[n]

n
0 3

1

1 2 64 5

1

2 2

3 3

4

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal Processing

Linear Convolution using the DFT

In practice, the circular convolution is implemented using the
DFT circular convolution property:

x [n] ⇤ h[n] = x
zp

[n]�M h
zp

[n]

= DFT �1 {DFTx
zp

[n] · DFT {h
zp

[n]}}

for 0  n  M � 1, M = L+ P � 1.
Advantage: This can be more e�cient than direct linear
convolution because the FFT and inverse FFT are
O(M · log

2

M).
Drawback: We must wait until we have all of the input data.
This introduces a large delay which is incompatible with
real-time applications like communications.

Approach: Break input into smaller blocks. Combine the
results using 1. overlap and save or 2. overlap and add .
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Linear Convolution using the DFT

In practice, the circular convolution is implemented using the
DFT circular convolution property:

x [n] ⇤ h[n] = x
zp

[n]�M h
zp

[n]

= DFT �1 {DFTx
zp

[n] · DFT {h
zp

[n]}}

for 0  n  M � 1, M = L+ P � 1.
Advantage: This can be more e�cient than direct linear
convolution because the FFT and inverse FFT are
O(M · log

2

M).
Drawback: We must wait until we have all of the input data.
This introduces a large delay which is incompatible with
real-time applications like communications.
Approach: Break input into smaller blocks. Combine the
results using 1. overlap and save or 2. overlap and add .
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Block Convolution

Problem

An input signal x [n] has very long length, which can be considered
infinite.
An impulse response h[n] has length P .
We want to compute the linear convolution

y [n] = x [n] ⇤ h[n]

using block lengths shorter than the input signal length.
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Block Convolution

Example:
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Overlap-Add Method

We decompose the input signal x [n] into non-overlapping segments
x
r

[n] of length L:

x
r

[n] =

(
x [n] rL  n  (r + 1)L� 1

0 otherwise

The input signal is the sum of these input segments:

x [n] =
1X

r=0

x
r

[n]

The output signal is the sum of the output segments x
r

[n] ⇤ h[n]:

y [n] = x [n] ⇤ h[n] =
1X

r=0

x
r

[n] ⇤ h[n] (1)

Each of the output segments x
r

[n] ⇤ h[n] is of length
N = L+ P � 1.
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Overlap-Add Method

We can compute each output segment x
r

[n] ⇤ h[n] with linear
convolution.
DFT-based circular convolution is usually more e�cient:

Zero-pad input segment x
r

[n] to obtain x
r ,zp[n], of length N.

Zero-pad the impulse response h[n] to obtain h
zp

[n], of length
N (this needs to be done only once).
Compute each output segment using:

x
r

[n] ⇤ h[n] = DFT �1 {DFT {x
r ,zp[n]} · DFT {h

zp

[n]}}

Since output segment x
r

[n] ⇤ h[n] starts o↵set from its neighbor
x
r�1

[n] ⇤ h[n] by L, neighboring output segments overlap at P � 1
points.
Finally, we just add up the output segments using (1) to obtain the
output.
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Overlap-Add Method
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Overlap-Save Method

Basic Idea
We split the input signal x [n] into overlapping segments x

r

[n] of
length L+ P � 1.
Perform a circular convolution of each input segment x

r

[n] with
the impulse response h[n], which is of length P using the DFT.
Identify the L-sample portion of each circular convolution that
corresponds to a linear convolution, and save it.
This is illustrated below where we have a block of L samples
circularly convolved with a P sample filter.
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Overlap-Save Method
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