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Motivations for Discrete Fourier Transform

Sampled representation in time and frequency

Numerical Fourier analysis requires a Fourier representation
that is sampled in time and frequency
Sampling in one domain corresponds to periodicity in the
other domain
Hence, we want a representation that is discrete and period in
both time and frequency.
This is the discrete-time Fourier series or, equivalently, the
discrete Fourier transform.
However, we are often dealing with signals that are not
periodic, but still using the DFT. This requires special
considerations.
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Motivations for Discrete Fourier Transform

E�cient Implementions

Very e�cient implementations of the discrete Fourier transform
exist

Direct evaluation of DFT: O(N2)
Fast Fourier Transform (FFT) algorithms: O(N log

2

N)
FFT algorithms are most straightforward for N = 2m

MATLAB commands:
X=fft(x)

x=ifft(X)

Convolution can be implemented e�ciently using the FFT

Direct convolution: O(N2)
FFT-based convolution: O(N log

2

N)
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Discrete Fourier Series

Definition

Consider N-periodic signal:

x̃ [n + N] = x̃ [n] 8n

and its frequency-domain representation, which is also
N-periodic:

X̃ [k + N] = X̃ [k] 8k

The “~” will indicate a periodic signal or spectrum.
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Discrete Fourier Series

Define
W

N

�

= e�j2⇡/N

x̃ [n] and X̃ [k] are related by the discrete Fourier series:

x̃ [n] =
1

N

N�1X

k=0

X̃ [k]W�kn

N

X̃ [k] =
N�1X

n=0

x̃ [n]W kn

N
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Discrete Fourier Transform

By convention, work with one period of x̃ [n] and X̃ [k]:

x [n]
�

=

(
x̃ [n] 0  n  N � 1

0 otherwise

X [k]
�

=

(
X̃ [k] 0  k  N � 1

0 otherwise

From these, if desired, we can recover the periodic
representations:

x̃ [n] = x [((n))
N

] =
1X

r=�1
x [n � rN]

X̃ [k] = X [((k))
N

] =
1X

r=�1
X [k � rN]

where ((n))
N

�

= n mod N
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Discrete Fourier Transform

The discrete Fourier transform relates x [n] and X [k]:

DFT

x [n] =
1

N

N�1X

k=0

X [k]W�kn

n

Inverse DFT, synthesis

X [k] =
N�1X

n=0

x [n]W kn

n

DFT, analysis

Although not stated it explicitly, it is understood that

x [n] = 0 outside 0  n  N � 1

X [k] = 0 outside 0  k  N � 1
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Alternative transform not in the book:

Orthonormal DFT

x [n] =
1p
N

N�1X

k=0

X [k]W�kn

n

Inverse DFT, synthesis

X [k] =
1p
N

N�1X

n=0

x [n]W kn

n

DFT, analysis

Why use this or the other?
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DFS vs DFT

This figure compares the periodic signal and its DFS,

x̃ [n]
DFS$ X̃ [k], to the corresponding one-period signal and its

DFT, x [n]
DFT$ X [k]

! "nx~
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0 1#N

. . . . . .

! "kX
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! "nx
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! "kX

k

0
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DFT Continued

Example:

Take N = 5

X [k] =

⇢ P
4

n=0

W nk

4

k = 0, 1, 2, 3, 4
0 otherwise

= 5�[k]

”5-point DFT ”
What if we take N = 10?
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DFT Continued

Q: What if we take N = 10?

A: X [k] = X̃ [k] where x̃ [n] is a period-10 sequence

Can show:

X [k] =

⇢ P
9

n=0

W nk

9

k = 0, 1, 2, 3, 4
0 otherwise

= e�j

4⇡
10

k

sin(⇡
2

k)

sin( ⇡
10

k)

”10-point DFT ”
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DFT vs DTFT

The DFT and the DTFT
The N-point DFT of x [n] is

X [k] =
N�1X

n=0

x [n]W kn

N

=
N�1X

n=0

x [n]e�j(2⇡/N)nk 0  k  N � 1

The DTFT of x [n] is

X (e j!) =
N�1X

n=0

x [n]e�j!n �1 < ! < 1

Comparing these two, we see that the DFT X [k] corresponds
to the DTFT X (e j!) sampled at N equally spaced frequencies
between 0 and 2⇡:

X [k] = X (e j!)|!=k

2⇡
N

0  k  N � 1

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal Processing



DFT vs DTFT

Back to example:

X (e j!) =
4X

n=0

e�j!n

= e�j2! sin(
5

2

!)

sin(!
2

)
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DFT and IDFT

Note that the DFT and the inverse DFT are computed in very
similar fashion.
If we write x [n] as the inverse DFT of X [k], multiply by N
and take the complex conjugate:

N · x⇤[n] = N

 
1

N

N�1X

k=0

X [k]W�kn

N

!⇤

=
N�1X

k=0

X ⇤[k]W kn

N

= DFT {X ⇤[k]} .

However, we also know that

N · x⇤[n] = N
�
DFT �1 {X [k]}

�⇤
.
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DFT and IDFT

Combining these two expressions

DFT {X ⇤[k]} = N
�
DFT �1 {X [k]}

�⇤

or

DFT �1 {X [k]} =
1

N
(DFT {X ⇤[k]})⇤

We can evaluate the inverse DFT by

Taking the complex conjugate,

Taking the DFT,

Multiplying by 1

N

, and

Taking the complex conjugate.
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DFT as Matrix operator

Note that the definition of the DFT and its inverse are
equivalent to matrix equations
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This shows that straightforward computation of the N-point
DFT or inverse DFT requires N2 complex multiplies.
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DFT as Matrix operator

We can write this much more compactly as a matrix equation,

X = W

N

x

x =
1

N
W

⇤
N

X

W

N

is the DFT coe�cient matrix, and x and X are column vectors
containing x [n] and X [k], and “⇤” is the conjugate transpose.

Note that since the columns and rows of W
N

are orthogonal, and

W

N

W

⇤
N

= W

⇤
N

W

N

= NI

where I is the identity matrix. Then

x =
1

N
W

⇤
N

X =
1

N
W

⇤
N

W

N

x =
1

N
(NI) x = x

as we would expect.
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Properties of Discrete Fourier Transform

These are inherited from the discrete-time Fourier series (EE120)
and need not be proved
(1) Linearity

↵
1

x
1

[n] + ↵
2

x
2

[n] $ ↵
1

X
1

[k] + ↵
2

X
2

[k]

(2) Circular Time Shift

x [((n �m))
N

] $ X [k]e�j(2⇡/N)km = X [k]W km

N
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Properties of Discrete Fourier Transform Cont.

This figure compares a shift of the periodic sequence,
x̃ [n �m], to a circular shift of the one-period sequence,
x [((n �m))

N

].

! "mnx #~

n

0 1#N

. . . . . .

m

$ %$ %! "
N

mnx #

n

0 1#Nm

! "nx~

n

0 1#N

. . . . . .

! "nx

n

0 1#N
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Properties of Discrete Fourier Transform Cont.

(3) Circular Frequency Shift

x [n]e j(2⇡/N)nl = x [n]W�nl

N

$ X [((k � l))
N

]

(4) Complex Conjugation

x⇤[n] $ X ⇤[((�k))
N

]

(5) Time Reversal and Complex Conjugation

x⇤[((�n))
N

] $ X ⇤[k]

(6) Conjugate Symmetry for Real Signals

x [n] = x⇤[n] $ X [k] = X ⇤[((�k))
N

]
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Properties of Discrete Fourier Transform Cont.

(7) Parseval’s Identity

N�1X

n=0

|x [n]|2 = 1

N

N�1X

k=0

|X [k]|2

Proof.

This is particularly easy using the matrix notation

x

⇤
x =

✓
1

N
W

⇤
N

X

◆⇤✓ 1

N
W

⇤
N

X

◆
=

1

N2

X

⇤
W

N

W

⇤
N| {z }

N·I

X =
1

N
X

⇤
X
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Circular Convolution Sum

Let x
1

[n] and x
2

[n] be of length N.

The circular convolution between x
1

[n] and x
2

[n] is defined as:

x
1

[n]�N x
2

[n]
�

=
N�1X

m=0

x
1

[m]x
2

[((n �m))
N

]

Note that circular convolution is commutative:

x
2

[n]�N x
1

[n] = x
1

[n]�N x
2

[n]
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Circular Convolution Sum

The circular convolution between x
1

[n] and x
2

[n] is same as
one period of the periodic convolution between the
corresponding periodic sequences x̃

1

[n] and x̃
2

[n]:

x
1

[n]�N x
2

[n] =

(P
N�1

m=0

x̃
1

[m]x̃
2

[n �m] 0  n  N � 1

0 otherwise

This is illustrated in below:

! " ! "#
$

%
$

1

0
21

~~N

m
mnxmx

n

0 1$N

. . . . . .

! " ! "nxnx N
21 O

n

0 1$N

n

! " ! "nxnx
21

~~ %

0 1$N

. . . . . .

0 1$N

. . . . . .

! " ! "nxnx
21

%
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Properties of Discrete Fourier Transform Cont.

(8) Circular Convolution Let x
1

[n] and x
2

[n] be of length N

x
1

[n]�N x
2

[n] $ X
1

[k] · X
2

[k]

This property is very useful for DFT-based convolution.

(9) Multiplication Let x
1

[n] and x
2

[n] be of length N

x
1

[n] · x
2

[n] $ 1

N
X
1

[k]�N X
2

[k]
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Linear Convolution using the DFT

We start with two nonperiodic sequences:

x [n] 0  n  L� 1
h[n] 0  n  P � 1

We can think of x [n] as a signal, and h[n] as a filter inpulse
response.
We want to compute the linear convolution:

y [n] = x [n] ⇤ h[n] =
L�1X

m=0

x [m] ⇤ h[n �m] =
P�1X

m=0

x [n �m]h[m]

y [n] = x [n] ⇤ h[n] is nonzero only for 0  n  L+ P � 2, and is of
length L+ P � 1 = M.
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Linear Convolution using the DFT

We will look at two approaches for computing y [n]:

(1) Direct Convolution

Evaluate the convolution sum directly.

This requires L · P multiplications

(2) Using Circular Convolution
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Linear Convolution using the DFT

(2) Using Circular Convolution

Zero-pad x [n] by P � 1 zeros:

x
zp

[n] =

(
x [n] 0  n  L� 1

0 L  n  L+ P � 2

Zero-pad h[n] by L� 1 zeros:

h
zp

[n] =

(
h[n] 0  n  P � 1

0 P  n  L+ P � 2

Both zero-padded sequences x
zp

[n] and h
zp

[n] are of length
M = L+ P � 1
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Linear Convolution using the DFT

Both zero-padded sequences x
zp

[n] and h
zp

[n] are of length
M = L+ P � 1

We can compute the linear convolution x [n] ⇤ h[n] = y [n] by
computing circular convolution x

zp

[n]�M h
zp

[n]:

Linear convolution via circular

y [n] = x [n] ⇤ y [n] =
(
x
zp

[n]�M h
zp

[n] 0  n  M � 1

0 otherwise
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Linear Convolution using the DFT

Example

L = P = 4 M = L+ P � 1 = 7

nx

n
0 3

1

1 2

nh

n
0 3

1

1 2

n
0 3

1

1 2

nxzp

64 5
n

0 3

1

1 2

nhzp

64 5

For 0 n 6, xzp[n] 7 hzp[n] = x[n] * h[n]

n
0 3

1

1 2 64 5

1

2 2

3 3

4
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Linear Convolution using the DFT

In practice, the circular convolution is implemented using the
DFT circular convolution property:

x [n] ⇤ h[n] = x
zp

[n]�M h
zp

[n]

= DFT �1 {DFTx
zp

[n] · DFT {h
zp

[n]}}

for 0  n  M � 1, M = L+ P � 1.
Advantage: This can be more e�cient than direct linear
convolution because the FFT and inverse FFT are
O(M · log

2

M).
Drawback: We must wait until we have all of the input data.
This introduces a large delay which is incompatible with
real-time applications like communications.

Approach: Break input into smaller blocks. Combine the
results using 1. overlap and save or 2. overlap and add .
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Linear Convolution using the DFT

In practice, the circular convolution is implemented using the
DFT circular convolution property:

x [n] ⇤ h[n] = x
zp

[n]�M h
zp

[n]

= DFT �1 {DFTx
zp

[n] · DFT {h
zp

[n]}}

for 0  n  M � 1, M = L+ P � 1.
Advantage: This can be more e�cient than direct linear
convolution because the FFT and inverse FFT are
O(M · log

2

M).
Drawback: We must wait until we have all of the input data.
This introduces a large delay which is incompatible with
real-time applications like communications.
Approach: Break input into smaller blocks. Combine the
results using 1. overlap and save or 2. overlap and add .
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Block Convolution

Problem

An input signal x [n] has very long length, which can be considered
infinite.
An impulse response h[n] has length P .
We want to compute the linear convolution

y [n] = x [n] ⇤ h[n]

using block lengths shorter than the input signal length.
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Block Convolution

Example:
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Overlap-Add Method

We decompose the input signal x [n] into non-overlapping segments
x
r

[n] of length L:

x
r

[n] =

(
x [n] rL  n  (r + 1)L� 1

0 otherwise

The input signal is the sum of these input segments:

x [n] =
1X

r=0

x
r

[n]

The output signal is the sum of the output segments x
r

[n] ⇤ h[n]:

y [n] = x [n] ⇤ h[n] =
1X

r=0

x
r

[n] ⇤ h[n] (1)

Each of the output segments x
r

[n] ⇤ h[n] is of length
N = L+ P � 1.
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Overlap-Add Method

We can compute each output segment x
r

[n] ⇤ h[n] with linear
convolution.
DFT-based circular convolution is usually more e�cient:

Zero-pad input segment x
r

[n] to obtain x
r ,zp[n], of length N.

Zero-pad the impulse response h[n] to obtain h
zp

[n], of length
N (this needs to be done only once).
Compute each output segment using:

x
r

[n] ⇤ h[n] = DFT �1 {DFT {x
r ,zp[n]} · DFT {h

zp

[n]}}

Since output segment x
r

[n] ⇤ h[n] starts o↵set from its neighbor
x
r�1

[n] ⇤ h[n] by L, neighboring output segments overlap at P � 1
points.
Finally, we just add up the output segments using (1) to obtain the
output.
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Overlap-Add Method
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Overlap-Save Method

Basic Idea
We split the input signal x [n] into overlapping segments x

r

[n] of
length L+ P � 1.
Perform a circular convolution of each input segment x

r

[n] with
the impulse response h[n], which is of length P using the DFT.
Identify the L-sample portion of each circular convolution that
corresponds to a linear convolution, and save it.
This is illustrated below where we have a block of L samples
circularly convolved with a P sample filter.
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Overlap-Save Method
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