Fall 2011, EE123 Digital Signal Processing Lecture 6

Miki Lustig, UCB

September 11, 2012

DFT and Sampling the DTFT

$$
x\left(e^{j \omega}\right)=e^{-j 4 \omega} \frac{\sin ^{2}(5 \omega / 2)}{\sin ^{2}(\omega / 2)}
$$

Circular Convolution as Matrix Operation

Circular convolution:

$$
\begin{aligned}
h[n] ®(x[n] & =\left[\begin{array}{cccc}
h[0] & h[N-1] & \cdots & h[1] \\
h[1] & h[0] & & h[2] \\
& & \vdots & \\
h[N-1] & h[N-2] & & h[0]
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[1] \\
\vdots \\
x[N]
\end{array}\right] \\
& =H_{c} x
\end{aligned}
$$

- H_{c} is a circulant matrix
- The columns of the DFT matrix are Eigen vectors of circulant matrices.
- Eigen vectors are DFT coefficients. How can you show?

Circular Convolution as Matrix Operation

- Diagonalize:

$$
W_{N} H_{c} W_{n}^{-1}=\left[\begin{array}{ccc}
H[0] & 0 \cdots & 0 \\
0 & H[1] \cdots & 0 \\
\vdots & 0 & H[N-1]
\end{array}\right]
$$

- Right-multiply by W_{N}

$$
W_{N} H_{c}=\left[\begin{array}{ccc}
H[0] & 0 \cdots & 0 \\
0 & H[1] \cdots & 0 \\
\vdots & 0 & H[N-1]
\end{array}\right] W_{N}
$$

- Multiply both sides by x

$$
W_{N} H_{c} x=\left[\begin{array}{ccc}
H[0] & 0 \cdots & 0 \\
0 & H[1] \cdots & 0 \\
\vdots & 0 & H[N-1]
\end{array}\right] W_{N} x
$$

- We are interested in efficient computing methods for the DFT and inverse DFT:

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \quad k=0, \ldots, N-1 \\
& x[n]=\sum_{k=0}^{N-1} X[k] W_{N}^{-k n}, \quad n=0, \ldots, N-1
\end{aligned}
$$

where

$$
W_{N}=e^{-j\left(\frac{2 \pi}{N}\right)}
$$

- Recall that we can use the DFT to compute the inverse DFT:

$$
\mathcal{D} \mathcal{F} \mathcal{T}^{-1}\{X[k]\}=\frac{1}{N}\left(\mathcal{D F T}\left\{X^{*}[k]\right\}\right)^{*}
$$

Hence, we can just focus on efficient computation of the DFT.

- Straightforward computation of an N-point DFT (or inverse DFT) requires N^{2} complex multiplications.
- Fast Fourier transform algorithms enable computation of an N -point DFT (or inverse DFT) with the order of just $N \cdot \log _{2} N$ complex multiplications.
This can represent a huge reduction in computational load, especially for large N.

N	N^{2}	$N \cdot \log _{2} N$	$\frac{N^{2}}{N \cdot \log _{2} N}$
16	256	64	4.0
128	16,384	896	18.3
1,024	$1,048,576$	10,240	102.4
8,192	$67,108,864$	106,496	630.2
6×10^{6}	36×10^{12}	135×10^{6}	2.67×10^{5}

* 6 Mp image size
- Most FFT algorithms exploit the following properties of $W_{N}^{k n}$:
- Conjugate Symmetry

$$
W_{N}^{k(N-n)}=W_{N}^{-k n}=\left(W_{N}^{k n}\right)^{*}
$$

- Periodicity in n and k :

$$
W_{N}^{k n}=W_{N}^{k(n+N)}=W_{N}^{(k+N) n}
$$

- Power:

$$
W_{N}^{2}=W_{N / 2}
$$

- Most FFT algorithms decompose the computation of a DFT into successively smaller DFT computations.
- Decimation-in-time algorithms decompose $x[n]$ into successively smaller subsequences.
- Decimation-in-frequency algorithms decompose $X[k]$ into successively smaller subsequences.
- We mostly discuss decimation-in-time algorithms here.

Assume length of $x[n]$ is power of $2\left(N=2^{\nu}\right)$. If smaller zero-pad to closest power.

Decimation-in-Time Fast Fourier Transform

- We start with the DFT

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \quad k=0, \ldots, N-1
$$

- Separate the sum into even and odd terms:

$$
X[k]=\sum_{n \text { even }} x[n] W_{N}^{k n}+\sum_{n \text { odd }} x[n] W_{N}^{k n}
$$

These are two DFT's, each with half of the samples.

Decimation-in-Time Fast Fourier Transform

Let $n=2 r(n$ even $)$ and $n=2 r+1(n$ odd $)$:

$$
\begin{aligned}
X[k] & =\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N}^{2 r k}+\sum_{r=0}^{(N / 2)-1} x[2 r+1] W_{N}^{(2 r+1) k} \\
& =\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N}^{2 r k}+W_{N}^{k} \sum_{r=0}^{(N / 2)-1} x[2 r+1] W_{N}^{2 r k}
\end{aligned}
$$

- Note that:

$$
W_{N}^{2 r k}=e^{-j\left(\frac{2 \pi}{N}\right)(2 r k)}=e^{-j\left(\frac{2 \pi}{N / 2}\right) r k}=W_{N / 2}^{r k}
$$

Remember this trick, it will turn up often.

Decimation-in-Time Fast Fourier Transform

- Hence:

$$
\begin{aligned}
X[k] & =\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N / 2}^{r k}+W_{N}^{k} \sum_{r=0}^{(N / 2)-1} x[2 r+1] W_{N / 2}^{r k} \\
& \triangleq G[k]+W_{N}^{k} H[k], \quad k=0, \ldots, N-1
\end{aligned}
$$

where we have defined:

$$
\begin{aligned}
G[k] \triangleq \sum_{r=0}^{(N / 2)-1} x[2 r] W_{N / 2}^{r k} & \Rightarrow \text { DFT of even idx } \\
H[k] \triangleq \sum_{r=0}^{(N / 2)-1} x[2 r+1] W_{N / 2}^{r k} & \Rightarrow \text { DFT of odd idx }
\end{aligned}
$$

Decimation-in-Time Fast Fourier Transform

An 8 sample DFT can then be diagrammed as

Decimation-in-Time Fast Fourier Transform

- Both $G[k]$ and $H[k]$ are periodic, with period $N / 2$. For example

$$
\begin{aligned}
G[k+N / 2] & =\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N / 2}^{r(k+N / 2)} \\
& =\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N / 2}^{r k} W_{N / 2}^{r(N / 2)} \\
& =\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N / 2}^{r k} \\
& =G[k]
\end{aligned}
$$

so

$$
\begin{aligned}
G[k+(N / 2)] & =G[k] \\
H[k+(N / 2)] & =H[k]
\end{aligned}
$$

Decimation-in-Time Fast Fourier Transform

- The periodicity of $G[k]$ and $H[k]$ allows us to further simplify.
- For the first $N / 2$ points we calculate $G[k]$ and $W_{N}^{k} H[k]$, and then compute the sum

$$
X[k]=G[k]+W_{N}^{k} H[k] \quad \forall\left\{k: 0 \leq k<\frac{N}{2}\right\}
$$

How does periodicity help for $\frac{N}{2} \leq k<N$?

Decimation-in-Time Fast Fourier Transform

$$
X[k]=G[k]+W_{N}^{k} H[k] \quad \forall\left\{k: 0 \leq k<\frac{N}{2}\right\} .
$$

- for $\frac{N}{2} \leq k<N$:

$$
\begin{aligned}
& W_{N}^{k+(N / 2)}=? \\
& X[k+(N / 2)]=?
\end{aligned}
$$

Decimation-in-Time Fast Fourier Transform

$$
X[k+(N / 2)]=G[k]-W_{N}^{k} H[k]
$$

We previously calculated $G[k]$ and $W_{N}^{k} H[k]$.

Now we only have to compute their difference to obtain the second half of the spectrum. No additional multiplies are required.

Decimation-in-Time Fast Fourier Transform

- The N-point DFT has been reduced two $N / 2$-point DFTs, plus $N / 2$ complex multiplications. The 8 sample DFT is then:

Decimation-in-Time Fast Fourier Transform

- Note that the inputs have been reordered so that the outputs come out in their proper sequence.
- We can define a butterfly operation, e.g., the computation of $X[0]$ and $X[4]$ from $G[0]$ and $H[0]:$

This is an important operation in DSP.

- Still $O\left(N^{2}\right)$ operations..... What shall we do?

Decimation-in-Time Fast Fourier Transform

- We can use the same approach for each of the $N / 2$ point DFT's. For the $N=8$ case, the $N / 2$ DFTs look like

*Note that the inputs have been reordered again.

Decimation-in-Time Fast Fourier Transform

- At this point for the 8 sample DFT, we can replace the $N / 4=2$ sample DFT's with a single butterfly.
The coefficient is

$$
W_{N / 4}=W_{8 / 4}=W_{2}=e^{-j \pi}=-1
$$

The diagram of this stage is then

Decimation-in-Time Fast Fourier Transform

Combining all these stages, the diagram for the 8 sample DFT is:

This the decimation-in-time FFT algorithm.

Decimation-in-Time Fast Fourier Transform

- In general, there are $\log _{2} N$ stages of decimation-in-time.
- Each stage requires $N / 2$ complex multiplications, some of which are trivial.
- The total number of complex multiplications is $(N / 2) \log _{2} N$.
- The order of the input to the decimation-in-time FFT algorithm must be permuted.
- First stage: split into odd and even. Zero low-order bit first
- Next stage repeats with next zero-lower bit first.
- Net effect is reversing the bit order of indexes

Decimation-in-Time Fast Fourier Transform

This is illustrated in the following table for $N=8$.

Decimal	Binary	Bit-Reversed Binary	Bit-Reversed Decimal
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

Decimation-in-Frequency Fast Fourier Transform

The DFT is

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{n k}
$$

If we only look at the even samples of $X[k]$, we can write $k=2 r$,

$$
X[2 r]=\sum_{n=0}^{N-1} x[n] W_{N}^{n(2 r)}
$$

We split this into two sums, one over the first $N / 2$ samples, and the second of the last $N / 2$ samples.

$$
X[2 r]=\sum_{n=0}^{(N / 2)-1} x[n] W_{N}^{2 r n}+\sum_{n=0}^{(N / 2)-1} x[n+N / 2] W_{N}^{2 r(n+N / 2)}
$$

Decimation-in-Frequency Fast Fourier Transform

But $W_{N}^{2 r(n+N / 2)}=W_{N}^{2 r n} W_{N}^{N}=W_{N}^{2 r n}=W_{N / 2}^{r n}$.
We can then write

$$
\begin{aligned}
X[2 r] & =\sum_{n=0}^{(N / 2)-1} x[n] W_{N}^{2 r n}+\sum_{n=0}^{(N / 2)-1} x[n+N / 2] W_{N}^{2 r(n+N / 2)} \\
& =\sum_{n=0}^{(N / 2)-1} x[n] W_{N}^{2 r n}+\sum_{n=0}^{(N / 2)-1} x[n+N / 2] W_{N}^{2 r n} \\
& =\sum_{n=0}^{(N / 2)-1}(x[n]+x[n+N / 2]) W_{N / 2}^{r n}
\end{aligned}
$$

This is the $N / 2$-length DFT of first and second half of $x[n]$ summed.

Decimation-in-Frequency Fast Fourier Transform

$$
\begin{aligned}
x[2 r] & =\operatorname{DFT}_{\frac{N}{2}}\{(x[n]+x[n+N / 2])\} \\
x[2 r+1] & =\operatorname{DFT}_{\frac{N}{2}}\left\{(x[n]-x[n+N / 2]) W_{N}^{n}\right\}
\end{aligned}
$$

(By a similar argument that gives the odd samples)

Continue the same approach is applied for the $N / 2$ DFTs, and the $N / 4$ DFT's until we reach simple butterflies.

Decimation-in-Frequency Fast Fourier Transform

The diagram for and 8-point decimation-in-frequency DFT is as follows

This is just the decimation-in-time algorithm reversed! The inputs are in normal order, and the outputs are bit reversed.

Non-Power-of-2 FFT's

A similar argument applies for any length DFT, where the length N is a composite number.
For example, if $N=6$, a decimation-in-time FFT could compute three 2-point DFT's followed by two 3-point DFT's

Non-Power-of-2 FFT's

Good component DFT's are available for lengths up to 20 or so. Many of these exploit the structure for that specific length. For example, a factor of

$$
W_{N}^{N / 4}=e^{-j \frac{2 \pi}{N}(N / 4)}=e^{-j \frac{\pi}{2}}=-j \quad \text { Why? }
$$

just swaps the real and imaginary components of a complex number, and doesn't actually require any multiplies.
Hence a DFT of length 4 doesn't require any complex multiplies. Half of the multiplies of an 8-point DFT also don't require multiplication.
Composite length FFT's can be very efficient for any length that factors into terms of this order.

For example $N=693$ factors into

$$
N=(7)(9)(11)
$$

each of which can be implemented efficiently. We would perform

- 9×11 DFT's of length 7
- 7×11 DFT's of length 9 , and
- 7×9 DFT's of length 11
- Historically, the power-of-two FFTs were much faster (better written and implemented).
- For non-power-of-two length, it was faster to zero pad to power of two.
- Recently this has changed. The free FFTW package implements very efficient algorithms for almost any filter length. Matlab has used FFTW since version 6

FFT computation time (Matlab FFTW) on MacBookPro

FFT as Matrix Operation

$$
\left(\begin{array}{c}
X[0] \\
\vdots \\
X[k] \\
\vdots \\
X[N-1]
\end{array}\right)=\left(\begin{array}{ccccc}
W_{N}^{00} & \cdots & w_{N}^{0 n} & \cdots & W_{N}^{0(N-1)} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
W_{N}^{k 0} & \cdots & W_{N}^{k n} & \cdots & W_{N}^{k(N-1)} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
W_{N}^{(N-1) 0} & \cdots & w_{N}^{(N-1) n} & \cdots & W_{N}^{(N-1)(N-1)}
\end{array}\right)\left(\begin{array}{c}
x[0] \\
\vdots \\
x[n] \\
\vdots \\
x[N-1]
\end{array}\right)
$$

- W_{N} is fully populated $\Rightarrow N^{2}$ entries.

FFT as Matrix Operation

$$
\left(\begin{array}{c}
x[0] \\
\vdots \\
x[k] \\
\vdots \\
x[N-1]
\end{array}\right)=\left(\begin{array}{ccccc}
w_{N}^{00} & \cdots & w_{N}^{0 n} & \cdots & w_{N}^{0(N-1)} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
w_{N}^{k 0} & \cdots & w_{N}^{k n} & \cdots & w_{N}^{k(N-1)} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
w_{N}^{(N-1) 0} & \cdots & w_{N}^{(N-1) n} & \cdots & w_{N}^{(N-1)(N-1)}
\end{array}\right)\left(\begin{array}{c}
x[0] \\
\vdots \\
x[n] \\
\vdots \\
x[N-1]
\end{array}\right)
$$

- W_{N} is fully populated $\Rightarrow N^{2}$ entries.
- FFT is a decomposition of W_{N} into a more sparse form:

$$
F_{N}=\left[\begin{array}{cc}
I_{N / 2} & D_{N / 2} \\
I_{N / 2} & -D_{N / 2}
\end{array}\right]\left[\begin{array}{cc}
W_{N / 2} & 0 \\
0 & W_{N / 2}
\end{array}\right]\left[\begin{array}{c}
\text { Even-Odd Perm. } \\
\text { Matrix }
\end{array}\right]
$$

- $I_{N / 2}$ is an identity matrix. $D_{N / 2}$ is a diagonal with entries $1, W_{N}, \cdots, W_{N}^{N / 2-1}$

Example: $N=4$

$$
F_{4}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & W_{4} \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -W_{4}
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

