EE123 Digital Signal Processing	Announcements Office hours TA 1-2pm Midterm 10/12 All Material so far including wavelets Office hours attendance weak
Lecture 10	M. Lustig, EECS UC Berkeley
M. Lustig, EECS UC Berkeley	2

3

Hi, Dr. Elizal	beth?
Yeah, vh I a	accidentally took
the Fourier tran	sform of my cat
P Ó	Meow
1 Survey	
	pontal
Spectrum <u>not</u> symmetric, so cat must be imaginary	http://xkcd.com/26/

Last Time

- Frequency Tiling (Heisenberg boxes)
- Short-Time Fourier Transform
 - Equal area tiling
- Wavelets
 - Adaptive tiling

4

Heisenberg Boxes

Time-Frequency uncertainty principle

HEISENBERG

Sidelobes of Hann vs rectangular window

M. Lustig, EECS UC Berkele

Limitations of Discrete STFT

- Need overlapping \Rightarrow Not orthogonal
- Computationally intensive O(MN log N)
- Same size Heisenberg boxes

From STFT to Wavelets

- Basic Idea:
 - -low-freq changes slowly fast tracking unimportant
 - -Fast tracking of high-freq is important in many apps.
 - -Must adapt Heisenberg box to frequency
- Back to continuous time for a bit.....

From STFT to Wavelets • Continuous time $\Omega \xrightarrow{\sigma_t} \sigma_t \qquad \sigma$

From STFT to Wavelets

$$Vf(u,s) = \int_{-\infty}^{\infty} f(t) \frac{1}{\sqrt{s}} \Psi^*(\frac{t-u}{s}) dt$$

- The function $\,\Psi$ is called a mother wavelet –Must satisfy:

$$\int_{-\infty}^{\infty} |\Psi(t)|^2 dt = 1 \quad \Rightarrow$$
 unit norm

$$\Phi_{-\infty}^{\infty}\Psi(t)dt=0$$
 \Rightarrow Band-Pass

M. Lustig, EECS UC Berkele

M. Lustig, EECS UC Berkele

M. Lustig, EECS UC Berkeley

17

Wavelets Transform

Can be written as linear filtering

$$Wf(u,s) = \frac{1}{\sqrt{s}} \int_{-\infty}^{\infty} f(t) \Psi^*(\frac{t-u}{s}) dt$$
$$= \left\{ f(t) * \overline{\Psi}_s(t) \right\} (u)$$

$$\overline{\Psi}_s = \frac{1}{\sqrt{s}} \Psi(\frac{t}{s})$$

M. Lustig, EECS UC Berkeley

25

 Wavelet coefficients are a result of bandpass filtering

- Many different constructions for different signals
 - -Haar good for piece-wise constant signals
 - -Battle-Lemarie': Spline polynomials
- Can construct Orthogonal wavelets
 - For example: dyadic Haar is orthonormal

$$\overline{\Psi}_{i,n}(t) = \frac{1}{\sqrt{2^{i}}} \Psi(\frac{t - 2^{i}n}{2^{i}})$$

$$_{i = [1, 2]}$$

M. Lustig, EECS UC Berkele 26

 $2, 3, \cdots$

Back to Discrete

- · Early 80's, theoretical work by Morlett, Grossman and Meyer (math, geophysics)
- Late 80's link to DSP by Daubechies and Mallat.
- From CWT to DWT not so trivial!
- Must take care to maintain properties

M. Lustig, EECS UC Berkeley

