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EE123
Digital Signal Processing

Lecture 10

1

M. Lustig,  EECS UC Berkeley

Announcements!

• Office hours TA 1-2pm
• Midterm 10/12 

–All Material so far including wavelets
• Office hours attendance weak
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http://xkcd.com/26/

How do you know this guy is insane?

Spectrum not symmetric, 
so cat must be imaginary
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Last Time

• Frequency Tiling (Heisenberg boxes) 
• Short-Time Fourier Transform

– Equal area tiling
• Wavelets

– Adaptive tiling
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Heisenberg Boxes
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DFT

X[k] =
N�1X

n=0

x[n]e�j2⇡kn/N

!

t
one DFT coefficient
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DFT

X[k] =
N�1X

n=0

x[n]e�j2⇡kn/N

!

t
Question: What is the effect of zero-padding?
Answer: Overlapped Tiling!
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X[r, k] =
L�1X

m=0

x[rR+m]w[m]e�j2⇡km/N

�! =
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L

�t = L
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Discrete STFT

optional

!

t
one STFT coefficient
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Discrete STFT

optional

!

tQuestion: What is the effect of R on tiling? what effect of N?
Answer: Overlapping in time of frequency or both!
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Spectrogram

• Recall bird chirp
x[n]

n

Example: Bird Chirp

Play Sound!
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Spectrum of a bird chirp

No temporal information!
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Spectrogram

• What is the difference between the spectrograms?
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a) Window size B<A
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c) Window type is different
d) (A) uses overlapping window
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Windows Examples

Here we consider several examples. As before, the sampling rate is
!
s

/2⇡ = 1/T = 20 Hz.
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Sidelobes of Hann vs rectangular windowWindows Examples

Hamming Window, L = 32
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Spectrogram

• What is the difference between the spectrograms?
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SpectrogramWindows Examples

Hamming Window, L = 32
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Windows Examples

Hamming Window, L = 64
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Lab 2

n

Original Signal

Overlapping

Hann Windows

N Samples

M Samples

Figure 6: Extracting segments of a long signal with a Hann window

how the frequency resolution improves, while the temporal resolution degrades.

Task 5: Time-Frequency plots of the radio-frequency spectrum with the SDR.

The samples that are obtained by the SDR represent a bandwidth of the spectrum around a center fre-
quency. Hence, when demodulating to base-band (i.e. zero frequency) the signal must be imaginary since
it has a non symmetric Fourier transform. In this case, we would like to display both sides of the spectrum.

Modify the function myspectrogram(x,m,fs) such that it detects if the input signal x is complex. In
that case, it will compute a double sided spectrum that is centered around DC. For this, it would we useful
to use the matlab commands: isreal and fftshift.

We will first look at radio FM spectrum. In the US the broadcast FM radio band is 88.1-107.9Mhz.
It is split into 200KHz slots. This is relatively a large bandwidth and therefor it is also called wideband
FM as opposed to narrowband FM which can be as low as 5 Khz. In FM radio the information is encoded
by modulating the frequency of the carrier,

yc(t) = A cos
✓
2⇡fct+ 2⇡�f

Z t

0

x(⌧)d⌧
◆
.

Here, fc is the carrier frequency, �f is the frequency deviation and x(t) is a normalized baseband signal.

The broadcast FM baseband signal, x(t), consists of mono (Left+Right) Channels from 30Hz to 15 KHz,
a pilot signal at fp = 19 KHz, amplitude modulated Stereo (Left - Right) channels around 2 · fp = 38KHz
and digital RBDS, which encodes the station information, song name etc. at 3 · fp = 57KHz. (See

8

http://en.wikipedia.org/wiki/FM_broadcasting for more information). The baseband signal is:

x(t) = (L+R)
| {z }

mono

+0.1 · cos(2⇡fpt)| {z }
pilot

+(L�R) cos(2⇡(2fp)t)| {z }
stereo

+0.05 · RBDS(t) cos(2⇡(3fp)t)| {z }
digital RBDS

.

The signal RBDS(t) is a signal consists of ±1 at constant intervals which encode 0, and 1 bits. This is the
spectrum of x(t):

Now, the SDR already demodulates by the carrier frequency fc, so the samples you get are actually

y[n] = y(nT ) = A exp

 

j2⇡�f

Z nT

0

x(⌧)d⌧

!

,

where T is the sampling rate.

Pick your favorite radio station (make sure there is good reception where you live! Don’t try it in the
basement or in rooms inside Cory that do not have windows). I’ve tested good reception from Cory hall
5th floor at 88.5Mhz and 94.1Mhz. Acquire 4 seconds of data at a sampling rate of 200,000 Hz. You
can use either rtl_tcp or rtl_sdr for that. Compute and display a spectrogram with a window of 500
samples. Include the spectrogram in your report. What is the spectral and temporal resolution? Explain
what you see. Don’t forget to play with di↵erent dynamic ranges of the spectrogram for best visualization.

In many analog radio systems, FM demodulation is performed by implementing a phased-locked loop
that tracks the frequency of the signal and extract the message x(t). However, it is very easy to implement
an FM demodulation when the samples are discrete. Note, that the signal x(t) is proportional to the
instantaneous frequency of the signal. It is also proportional to the derivative of the phase! We can imple-
ment this by computing the finite di↵erences of the phase of our signal angle(y[n])-angle(y[n-1]). An
alternative that is robust to phase wrapping is to compute the product y[n]y⇤[n� 1] and then compute its
phase. Convince yourself that it works! In matlab it can be simply implemented by:

>> x = angle(y[2:end].*conj(y[1:end-1]));

FM demodulate the samples you got from the SDR and display the spectrogram. Note, that afterFM
demodulating the signal should be real and hence only half the spectrum should be displayed. Identify the
mono audio, the pilot, the stereo and the RBDS signals. Note, that the RBDS signal may be too weak to
detect or may need better spectral resolution.
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Lab 2
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Spectrogram of Demodulated FM radio (Adele on 96.5 MHz)

0

19KHz

38KHz

57KHz

16



M. Lustig,  EECS UC Berkeley

Limitations of Discrete STFT

• Need overlapping ⇒ Not orthogonal

• Computationally intensive O(MN log N)

• Same size Heisenberg boxes
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From STFT to Wavelets

• Basic Idea:
–low-freq changes slowly - fast tracking unimportant
–Fast tracking of high-freq is important in many apps.
–Must adapt Heisenberg box to frequency

• Back to continuous time for a bit.....
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�t

�!
Sf(u,⌦) =

Z 1

�1
f(t)w(t� u)e�j⌦tdt

Wf(u, s) =

Z 1

�1
f(t)
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s
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)dt
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From STFT to Wavelets

• Continuous time
�t

�!

u

⌦

�t

�!

*Morlet - Grossmann

19

Z 1

�1
| (t)|2dt = 1

Z 1

�1
 (t)dt = 0
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From STFT to Wavelets

• The function      is called a mother wavelet
–Must satisfy:

Wf(u, s) =

Z 1

�1
f(t)

1p
s
 ⇤(

t� u

s
)dt

 

⇒ Band-Pass

⇒ unit norm
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1p
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STFT and Wavelets “Atoms”

STFT Atoms Wavelet Atoms

u u

⌦hi

u u
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• Mexican Hat

• Haar
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Examples of Wavelets

 (t) = (1� t2)e�t2/2

 (t) =

8
<

:

�1 0  t < 1
2

1

1
2  t < 1

0 otherwise
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Example: Wavelet of Chirp

s

u

u
23
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Example 2: “Bumpy” Signal

log(s)

u

SombreroWavelet
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Wf(u, s) =
1p
s

Z 1

�1
f(t) ⇤(

t� u

s
)dt

=
�
f(t) ⇤ s(t)

 
(u)

 s =
1p
s
 (

t

s
)
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Wavelets Transform

• Can be written as linear filtering

• Wavelet coefficients are a result of bandpass 
filtering

25

i = [1, 2, 3, · · · ]
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Wavelet Transform

• Many different constructions for different 
signals
–Haar good for piece-wise constant signals
–Battle-Lemarie’ : Spline polynomials

• Can construct Orthogonal wavelets
– For example: dyadic Haar is orthonormal

 i,n(t) =
1p
2i
 (

t� 2in

2i
)
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Orthonormal Haar

Same scale
non-overlapping

Orthogonal 
between scales
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Scaling function

 i,n(t) =
1p
2i
 (

t� 2in

2i
)

• Problem: 
–Every stretch only covers half remaining 

bandwidth
–Need Infinite functions

i=mi=m+1i=m+2i=m+3

recall, for chirp:

28
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Scaling function

 i,n(t) =
1p
2i
 (

t� 2in

2i
)

• Problem: 
–Every stretch only covers half remaining 

bandwidth
–Need Infinite functions

• Solution:
–Plug low-pass spectrum with a scaling function   

i=mi=m+1

29

�(t) =

⇢
1 0  t < 1

0 otherwise
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Haar Scaling function

 (t) =

8
<

:

�1 0  t < 1
2

1

1
2  t < 1

0 otherwise
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Back to Discrete

• Early 80’s, theoretical work by Morlett, 
Grossman and Meyer (math, geophysics)

• Late 80’s link to DSP by Daubechies and 
Mallat.

• From CWT to DWT not so trivial!
• Must take care to maintain properties

31

!

n

ds,u =
N�1X

n=0

x[n] s,u[n]

as,u =
N�1X

n=0

x[n]�s,u[n]
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Discrete Wavelet Transform

d00 d01 d02 d03

d10 d11

d20

a20
finest scale
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!

n

ds,u =
N�1X

n=0

x[n] s,u[n]

as,u =
N�1X

n=0

x[n]�s,u[n]
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Discrete Wavelet Transform

d00 d01 d02 d03

d10 d11

a10 a11

stop here:
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Example: Discrete Haar Wavelet
Haar for n=2

1p
2

mother 
wavelet

scaling
function

detailapproximation

Equivalent to DFT2!

a00

d00
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1

2

1p
8
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Discrete Orthogonal Haar Wavelet
Haar for n=8

!

t

1p
2

Ψ01

1p
2

Ψ02

1p
2

Ψ03

Ψ20

Ψ11

Ψ10

1p
2

Ψ00Φ20scaling

1

2

1p
8
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Fast DWT with Filter Banks

g[n]

g[n]

h[n]

h[n]

d0n?

a0n? not quite...
too many 
coefficients

x[n]

36
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Fast DWT with Filter Banks

g[n]

g[n]

h[n]

h[n]

d0n

a0n

2

2
x[n]
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x[n]
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Fast DWT with Filter Banks

g[n]

g[n]

h[n]

h[n]

d0n

a0n

2

2 h[n]

g[n] 2

2

d1n

a1n

complexity:
N + N/2 + N/4 + N/8 +...+  = 2N
                                        =O(N)

38

x[n]

M. Lustig,  EECS UC Berkeley

Decomposition

g[n]

g[n]

h[n]

h[n]

d0n

a0n

2

2 h[n]

g[n] 2

2

d1n

a1n
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x[n]

M. Lustig,  EECS UC Berkeley

Reconstruction
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Just flip arrows!

40



M. Lustig,  EECS UC Berkeley

x[n]

Haar

Haar DWT Example

d0nd1n
d2n

a2n
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DFT

Haar

Approximation from 25/256 coefficients
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Example: Denoising Noisy Signals

Haar

43

M. Lustig,  EECS UC Berkeley

Example: Denoising by Thresholding

noisy

denoised
largest 25 coefficients
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d0x

d0y d0xy

d1x

d1xyd1y

d2x

d2y d2xy

a2
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Noisy Wavelet Denoised
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Approximation/Compression

48



49 50


