
 Digital Signal Processing

Lecture 15

Interchanging Operations

- Last time, showed:

Polyphase Decomposition

- We can decomposed an impulse response to:

$$
h[n]=\sum_{k=0}^{M-1} h_{k}[n-k]
$$

Polyphase Decomposition

$$
e_{k}[n] \rightarrow \uparrow \mathrm{M} \rightarrow h_{k}[n]
$$

recall upsampling \Rightarrow scaling

$$
H_{k}[z]=E_{k}\left[z^{M}\right]
$$

Also, recall:

$$
h[n]=\sum_{k=0}^{M-1} h_{k}[n-k]
$$

So,

$$
H(z)=\sum_{k=0}^{M-1} E_{k}\left(z^{M}\right) z^{-k}
$$

Polyphase Decomposition

- Define:

$$
\begin{aligned}
h_{k}[n] \rightarrow \downarrow \mathrm{M} & e_{k}[n] \\
e_{k}[n] & =h_{k}[n M]
\end{aligned}
$$

Polyphase Decomposition

$$
H(z)=\sum_{k=0}^{M-1} E_{k}\left(z^{M}\right) z^{-k}
$$

Why should you care?

Polyphase Implementation of Decimation

$$
x[n] \rightarrow H(z) \rightarrow y[n] \rightarrow \downarrow \mathrm{M} \rightarrow w[n]=y[n M]
$$

- Problem:
-Compute all $\mathrm{y}[\mathrm{n}]$ and then throw away -wasted computation!
- For FIR length $N \Rightarrow N$ mults/unit time
-Can interchange Filter with compressor?
- Not in general!

Polyphase Implementation of Decimation

$$
x[n] \rightarrow H(z) \rightarrow y[n] \rightarrow \downarrow \mathrm{M} \rightarrow w[n]=y[n M]
$$

M. Lustig, EECS UC Berkeley

Polyphase Implementation of Decimation

$$
x[n] \rightarrow H(z) \rightarrow y[n] \rightarrow \downarrow \mathrm{M} \rightarrow w[n]=y[n M]
$$

Interchange filter with decimation

Each Filter: N / M * $(1 / M)$ mult/unit time
Total: N/M mult/unit time

Multirate Filter Bank

- For many types of applications we would like to process bands in frequency separately
- Analysis/synthesis of speech, Audio, more
- Idea:
-Split frequency
-Decimate to reduce computation
-(Much like wavelets!)

Subtleties in Time-Freq Tiling

- Assume h_{0}, h_{1} are ideal low,high pass filters

Multirate FilterBank

- $h_{0}[n]$ is low-pass, $h_{l}[n]$ is high-pass
- Often $h_{1}[n]=e^{j \omega n} h_{0}[n]$ or $H_{1}\left(e^{j \omega}\right)=H_{0}\left(e^{j(w-\pi)}\right)$

Note: notation different than in lecture 9,10 for Haar

Subtleties in Time-Freq Tiling

- Assume h_{0}, h_{1} are ideal low, high pass filters

Subtleties in Time-Freq Tiling

- Assume h_{0}, h_{1} are ideal low, high pass filters

Perfect Reconstruction Ideal Filters

Subtleties in Time-Freq Tiling

- Assume h_{0}, h_{1} are ideal low, high pass filters

Perfect Reconstruction non-Ideal Filters

Quadrature Mirror Filters - perfect recon

M. Lustig, EECS UC Berkeley

A Few Notes on Practical A/D

Oversampling A/D to simplify C.T. Anti-Aliasing Filter

Quadrature Mirror Filters - perfect recon

Example Haar:

Sampling and Quantization

Sampling and Quantization

M. Lustig, EECS UC Berkeley

Quantization Noise

Figure 4.57 (continued) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer.
(c) Quantization error sequence for 3-bit quantization of the signal in (a). (d) Quantization error sequence for 8 -bit quantization of the signal in (a).

(b)

Noise Model For Quantization

M. Lustig, EECS UC Berkeley

PDF of Quantization Noise

$$
\mathrm{SNR}_{Q}=6.02 B+10.8-20 \log _{10}\left(\frac{X_{m}}{\sigma_{x}}\right)_{\text {rms of amp }}^{\text {Signal amp }}
$$

