(1) Textbook problem 7.1 (e)
(2) Give the observer canonical form for the following transfer function:

$$
\frac{s^{3}+6 s^{2}+7 s+3}{(s+2)\left(s^{2}+3 s+1\right)}
$$

(3) Textbook problem 7.13
(4.a) For the system defined in problem 7.13, find the transition matrix of the system.
(4.b) If $x(3)=[12]$, find $x(5)$.
(5.a) Diagonalize the system in problem 7.13.
(5.b) Find the transition matrix of this diagonalized system.
(5.c) What is the state value of the diagonalized system that corresponds to the state $x=\left[\begin{array}{ll}1 & 2\end{array}\right]$ w.r.t the original coordinate system?
(6) Textbook problem 7.15 (a)
(7) In Monday's class, someone asked if we can always use the input u to steer the state to a given state ($\mathrm{x} 1, \mathrm{x} 2$) and keep the state there from that point on.

Find the condition on A and b such that for ANY INIITIAL condition Xo , we can keep $\mathrm{X}(\mathrm{t})=\mathrm{Xo}$. ******** This problem has changed $* * * * * * * * *$

Hint: This has something to do with the range space of a matrix and when the state vector is constant, $\dot{x}=0$. (Find your linear algebra book for definition of range space. I won't give you problem like this in your final exam.)

As in the lecture, I use A, b, c, d for linear state equation.

$$
\begin{aligned}
& \dot{x}=A x+b u \\
& y=c x+d u
\end{aligned}
$$

