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EE130 QUIZ RESULTS (UG scores only)
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A final review session will be offered on Thursday, May 
10 from 10AM to 12noon in 521 Cory (the Hogan Room). 

The Final Exam will take place from 12:30PM to 3:30PM 
on Saturday May 12 in 60 Evans. 
» All of the material of the course will be covered (including HW#14) 
» Closed book, no calculators; 7 pages of notes allowed. 

Quiz 6 results:
Mean = 21.69
Median = 22
Std. Dev. = 1.779
High = 24
Low = 17.5



Prof. Tsu-Jae King Liu
Department of Electrical Engineering and Computer Sciences 

University of California, Berkeley, CA 94720

May 7, 2007



( More of Moore )
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Issues for scaling Lg to below 20 nm:

» Leakage
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The traditional approach to
transistor scaling is reaching
fundamental limits

halo doping» Channel engineering

» Incommensurate gains in IDsat

» VT variation

» Gate oxide scaling

» Shallow junctions

SiO2
Gate

A. Brown et al., IEEE Trans. Nanotechnology, p. 195, 2002
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Leakage must be suppressed to scale down Lg

Leakage occurs in region far from channel surface

Let s get rid of it!
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Leakage is suppressed by using a thin body (TSi < Lg)
» Channel doping is not needed higher carrier mobility
» Aggressive gate-oxide scaling is not needed

Double-gate structure is most scalable (to Lg<10nm)
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Lg = 12 nm

Tox = 2 nm

UTB suppresses leakage 
Thick S/D => low Rseries
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Issues for bulk-Si MOSFET scaling obviated
» Body does not need to be heavily doped
» Tox does not need to be scaled as aggressively
» Ultra-shallow S/D junction formation is not an issue

Body thickness must be less than ~1/3 x Lg

» Formation of uniformly thin body is primary challenge
» For TSi < 4 nm, quantum confinement & interface 

roughness VT variation and degraded gm
K. Uchida et al., IEDM Technical Digest, pp. 47-50, 2002
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Planar DG-FET
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Y.-K. Choi et al. (UC Berkeley), IEDM
Technical Digest, pp. 421-424, 2001

15nm Lg FinFET:

Fin Height 
HFIN = W/2

D. Hisamoto et al. (UC 
Berkeley), IEDM Technical 
Digest, pp. 1032-1034, 1998

N. Lindert et al. (UC Berkeley),
IEEE Electron Device Letters, 
pp. 487-489, 2001
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The FinFET is attractive for high-density flash memory
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P. Xuan et al. (UC Berkeley), IEDM Technical Digest, pp. 609-612, 2003

Measured Retention Characteristics Measured Endurance Behavior
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Subsequent publications:

M. Specht et al. (Infineon Technologies ), IEDM 2004
C. W. Oh et al. (Samsung Electronics), IEDM 2004
E. S. Cho et al. (Samsung Electronics), Symp. VLSI Technology 2005
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H. Kam and T.-J. King, Proc. 2004 Silicon Nanoelectronics Workshop, pp. 9-10
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Parasitic resistance (& capacitance) will limit the performance 
of nanoscale CMOS  Better FET designs are needed!
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Advanced structures will enable Si FET scaling to Lg <10 nm
» Minimization of parasitics will become the primary challenge
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Quantum mechanical tunneling sets a fundamental 
scaling limit for the channel length L, to ~5 nm.

Source Drain

EC

EC

If electrons can easily tunnel 
through the source-to-channel 
potential barrier, the gate 
cannot shut off the transistor.

J. Wang et al., IEDM Technical Digest, pp. 707-710, 2002

NMOSFET Band Diagram
(OFF state)



( More than Moore )
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innovative circuit & system design

novel semiconductor devices

3-D & heterogeneous integration
e.g. with micro-electro-mechanical 

devices (MEMS), microfluidics

Alternative approaches to 
» enhance performance and/or functionality
» lower power consumption per function

can help to reduce cost per function

TIME (yrs)

alternative
approaches

to scaling
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Texas Instruments Inc.

TMTM

SEM image of pixel array
Schematic of 2 pixels

Mirrors are made using layers of metals (Al alloys) 
deposited on top of CMOS circuitry

Each mirror corresponds to a single pixel, programmed by an underlying 
memory cell to deflect light either into a projection lens or a light absorber.
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courtesy of Robert Aigner (Infineon Technologies)

MEMS -
enabled 

single-chip 
radio

Advantages of 
MEMS RF filters:

small size
low power
low phase noise
high Q

Timing reference can 
also be implemented 
on-chip with MEMS

Integration trend for mobile phones

Clusters

Massive Cluster

Gigabit Ethernet

wireless sensor network
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The electric field can be induced 
by applying a voltage across 2 
electrodes sandwiching the 
droplet

http://www.ee.duke.edu/research/microfluidics/

An electric field modifies the wetting 
behavior of a liquid droplet on a surface, by 
reducing interfacial energy

If an electric field is applied non-uniformly, 
then a surface-energy gradient is created, 
which causes the droplet to move 

http://www.ee.duke.edu/research/microfluidics/
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Multiple control electrodes can 
be used to manipulate droplets 
across a surface under direct 
electrical control

R. B. Fair et al., IEDM Technical Digest, pp. 779-782, 2003

» No pumps, valves, channels needed

» Units of fluid can be transported, 
stored, mixed, reacted, or analyzed 
using a sequence of electrode 
voltage combinations. 

Electrowetting arrays are 
promising for highly integrated 
and automated lab-on-a-chip
systems!
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Opportunities remain for innovations to
» reduce power per function (e.g. novel devices)
» lower system cost (e.g. integrated system on chip)
» increase system functionality 

(e.g. heterogeneous integration of III-V devices, M/NEMS, CNTs, molecular devices, etc.)
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CMOS scaling will continue
with advances in 
» transistor design
» fabrication techniques
» materials

(~1970 to present)
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