Announcements

- A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).
- The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.
 - » All of the material of the course will be covered (including HW#14)
 - » Closed book, no calculators; 7 pages of notes allowed.

MOSFET Scaling to the Limit ... and Beyond

Prof. Tsu-Jae King Liu

Department of Electrical Engineering and Computer Sciences *University of California*, Berkeley, CA 94720

May 7, 2007

Transistor Scaling to the Limit

("More of Moore")

MOSFET Scaling Challenges

- The traditional approach to transistor scaling is reaching fundamental limits
 » Gate oxide scaling
 » Shallow junctions
 » Channel engineering
- Issues for scaling L_g to below 20 nm:
 - » Leakage
 - » Incommensurate gains in I_{Dsat}
 - » V_T variation

A. Brown et al., IEEE Trans. Nanotechnology, p. 195, 2002

Why New Transistor Structures?

- Leakage must be suppressed to scale down L_q
- Leakage occurs in region far from channel surface

Thin-Body MOSFETs

- Leakage is suppressed by using a thin body $(T_{Si} < L_a)$
 - » Channel doping is not needed \rightarrow higher carrier mobility
 - » Aggressive gate-oxide scaling is not needed
- **Double-gate structure is most scalable** (to *L_a*<10nm)

Double-Gate (DG)

Ultra-Thin-Body MOSFET

- UTB suppresses leakage
- Thick S/D => low R_{series}

M. Takamiya *et al.*, *Proc. 1997 ISDRS*, p. 215 B. Yu *et al.* (UC Berkeley), *Proc. 1997 ISDRS*, p. 623

UTB MOSFET Scaling

- Issues for bulk-Si MOSFET scaling obviated
 - » Body does not need to be heavily doped
 - » T_{ox} does not need to be scaled as aggressively
 - » Ultra-shallow S/D junction formation is not an issue
- Body thickness must be less than $\sim 1/3 \times L_{\alpha}$
 - » Formation of uniformly thin body is primary challenge
 - » For $T_{Si} < 4$ nm, quantum confinement & interface roughness $\rightarrow V_T$ variation and degraded g_m

K. Uchida et al., IEDM Technical Digest, pp. 47-50, 2002

Double-Gate "FinFET"

Planar DG-FET

FinFET

D. Hisamoto et al. (UC Berkeley), IEDM Technical *Digest*, pp. 1032-1034, 1998

N. Lindert et al. (UC Berkeley), **IEEE Electron Device Letters**, pp. 487-489, 2001

Y.-K. Choi et al. (UC Berkeley), IEDM Technical Digest, pp. 421-424, 2001

Mag = 77.80 K X 20nm* 200nm*

15 nm *L***_a FinFETs**

Y.-K. Choi et al. (UC Berkeley), IEDM Technical Digest, pp. 421-424, 2001

$T_{Si} = 10 \text{ nm}; T_{ox} = 2.1 \text{ nm}$

Impact of FinFET Orientation

L. Chang et al., IEEE Trans. Electron Devices, Vol. 51, p. 1621, 2004

10 nm *L*_a **FinFETs**

B. Yu et al. (AMD & UC Berkeley), IEDM Technical Digest, pp. 251-254, 2002

Fig.5 Id-Vd characteristics of 10nm gate length CMOS FinFET transistors.

FinFET Flash Memory Cell

P. Xuan et al. (UC Berkeley), IEDM Technical Digest, pp. 609-612, 2003

The FinFET is attractive for high-density flash memory

charge-storage layer

Subsequent publications:

- M. Specht et al. (Infineon Technologies), IEDM 2004
- C. W. Oh et al. (Samsung Electronics), IEDM 2004
- E. S. Cho et al. (Samsung Electronics), Symp. VLSI Technology 2005

Impact of S/D Contact Structure

H. Kam and T.-J. King, Proc. 2004 Silicon Nanoelectronics Workshop, pp. 9-10

Parasitic resistance (& capacitance) will limit the performance of nanoscale CMOS \rightarrow Better FET designs are needed!

- Advanced structures will enable Si FET scaling to L_α <10 nm
 - » Minimization of parasitics will become the primary challenge

Channel-Length Scaling Limit

J. Wang et al., IEDM Technical Digest, pp. 707-710, 2002

 Quantum mechanical tunneling sets a fundamental scaling limit for the channel length L, to ~5 nm.

16

Fig. 2 I_{DS} vs. V_{GS} for the DG MOSFETs with 1nm body thickness and two different channel lengths (L_C=3nm and 10nm). (V_{DS}=V_{DD}=0.4V) The simulation is based on the classical (solid lines) and quantum (dashed lines: circle for L_C=3nm, and triangle for L_C=10nm) ballistic transport models. Different gate work functions are used to achieve the same off-current value (10 μ A/ μ m) for each channel length (classical simulation). It can be clearly seen that the S/D tunneling effect does not significantly affect the current characteristics at 10nm channel length but it really does at 3nm channel length. If electrons can easily tunnel through the source-to-channel potential barrier, the gate cannot shut off the transistor.

Beyond Transistor Scaling

("More than Moore")

Off the Roadmap...

Alternative approaches to

- » enhance performance and/or functionality
- » lower power consumption per function

can help to reduce cost per function

- innovative circuit & system design
- > novel semiconductor devices
- 3-D & heterogeneous integration
 - *e.g.* with micro-electro-mechanical devices (MEMS), microfluidics...

DMD[™] Projection Display Chip

Texas Instruments Inc.

 Mirrors are made using layers of metals (Al alloys) deposited on top of CMOS circuitry

Schematic of 2 pixels

Each mirror corresponds to a single pixel, programmed by an underlying memory cell to deflect light either into a projection lens or a light absorber.

courtesy of Robert Aigner (Infineon Technologies)

Droplet Transport by Electrowetting

http://www.ee.duke.edu/research/microfluidics/

 An electric field modifies the wetting behavior of a liquid droplet on a surface, by reducing interfacial energy

FIG. 1. Schematic cross-section of the electrowetting microactuator.

 If an electric field is applied non-uniformly, then a surface-energy gradient is created, which causes the droplet to move

 The electric field can be induced by applying a voltage across 2 electrodes sandwiching the droplet

Digital Microfluidic Processing

R. B. Fair et al., IEDM Technical Digest, pp. 779-782, 2003

Fig. 9. Multiplexed assay µTAS with on-chip sample processing and 4-phase bus clocking.

- Multiple control electrodes can be used to manipulate droplets across a surface under direct electrical control
 - » No pumps, valves, channels needed
 - » Units of fluid can be transported, stored, mixed, reacted, or analyzed using a sequence of electrode voltage combinations.
- → Electrowetting arrays are promising for highly integrated and automated "lab-on-a-chip" systems!

Summary

Silicon as the Electronics Platform

(e.g. heterogeneous integration of III-V devices, M/NEMS, CNTs, molecular devices, etc.)