Terminology Differences between Pierret's and Hu's textbooks		
	Pierret	Hu
Density of states	$g_c(E), g_v(E)$	$D_c(E), D_v(E)$
Built-in potential	V _{bi}	$arPsi_{bi}$
Semiconductor dielectric constant	$K_s \cdot \varepsilon_0$	\mathcal{E}_{S}
PN junction breakdown voltage	V _{BR}	V_B
BJT Emitter Efficiency	γ	γ_E
BJT Common Base Current Gain	α_{dc}	α_F
BJT Common Emitter Current Gain	β_{dc}	eta_F
BJT EM model	$\alpha_{F} \cdot I_{F,0}$ or $\alpha_{R} \cdot I_{R,0}$ where α_{F} is equal to α_{dc}	I_s
	$\frac{\alpha_R}{(1-\alpha_R)}$	β_R
MOS gate oxide capacitance	$C_o \text{ or } C_O / A_G$	Cox
MOS gate oxide thickness	x _o	T _{ox}
MOS inversion charge concentration	Q_N	Q_{inv}
MOSFET channel width	Ζ	W
MOSFET Source/Drain junction depth	r _j	X_j