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Solution to Homework Assignment #2 
Problem 1: Density of States and the Fermi Function
The density of states in a certain semiconductor material is given by the following relationships:

gc(E) = A(E-Ec)   
for E > Ec

gv(E) = (A/2)(Ev-E)
for E < Ev 



where A is a constant.  The semiconductor is not doped and has a band gap of 1 eV, and is maintained at room temperature (T = 300K) under equilibrium conditions.

a) The densities of states (arbitrary units) for electrons and holes are shown below:
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Since the semiconductor is undoped, the electron concentration (n) and hole concentration (p) each are equal to the intrinsic carrier concentration (ni).  (Electrons and holes are only created in pairs by thermal generation.)  Thus, the Fermi level (EF) is equal to the intrinsic Fermi level (Ei).  The expression on Slide 13 of Lecture 3 can be used to find its location relative to the conduction band edge (Ec) and the valence band edge (Ev):
EF = Ei = (Ec+Ev)/2 + kT∙ln(Nv/Nc) = (Ec+Ev)/2 + kT∙ln(1/2) = (Ec+Ev)/2 ( 0.009 eV
In other words, EF = Ei is located 9 meV below the middle of the energy bandgap (“midgap”) for this semiconductor material.  The probability of occupancy by an electron, f(E), and the probability of occupancy by a hole, (1-f(E), are plotted below.
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The electron distribution (n(E)) in the conduction band and the hole distribution (p(E)) in the valence band each are obtained by multiplying the density of states by the probability of occupancy:
n(E) = gc(E)∙f(E)

   p(E) = gv(E)∙(1-f(E))

n(E) and p(E) are plotted below. (Note that there is a break in the vertical axis, for clarity.)
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Since n = p, the area underneath these curves should be same.
b) The electron concentration n is obtained by integrating n(E) over all the energies in the conduction band.  Since the probability of occupancy is very small for energies well above Ec, we can extend the integration limit to ( with negligible error.  Also, the Boltzmann approximation (f(E) = exp[-(E-EF)/kT] and 1-f(E) = exp[-(EF-E)/kT]) can be used since the conduction band and valence band each are more than 3kT (78 meV) away from EF:
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Similarly, the hole concentration p is obtained by integrating p(E) over all the energies in the valence band:
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Since n = p = ni, the intrinsic carrier concentration can be calculated as:
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, where EG is the band gap energy.
c) Since the density of states is smaller for the valence band, the probability of occupancy by a hole in the valence band must be larger than the probability of occupancy by an electron in the conduction band, in order for the electron and hole concentrations to be equal (n = p).   Thus, the probability function must be shifted toward the valence band (away from the conduction band), so that the Fermi level is below midgap.  
Problem 2: Energy Band Diagram
Phosphorus is a donor, so this sample is n-type with n = ND = 1015 cm-3.
a) Since ni = 1010 cm-3 and n = ni e(EF-Ei)/kT :
EF – Ei = kT(ln105) = 5 ∙ kT(ln10) = 5 ∙ 60 meV = 0.30 eV
The intrinsic Fermi level is located slightly below midgap:
Ec  – Ei = Ec  – [(Ec+Ev)/2 + (kT/2)∙ln(Nv/Nc)] = (Ec – Ev)/2 – (kT/2)∙ln(Nv/Nc) = 0.56 eV + 0.006 eV = 0.566 eV
Hence Ec – EF = (Ec – Ei) – (EF – Ei) = 0.566 – 0.30 = 0.266 eV
The energy band diagram is:
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b) At T = 600K, the Si band gap EG = 1.2 ( 2.8×10-4 (T) = 1.03 eV.
The conduction-band and valence-band effective densities of states Nc and Nv each have T3/2 dependence, so their product has T3 dependence.  (The ratio Nv/Nc does not change with temperature, assuming that the carrier effective masses are independent of temperature.)  Therefore, when the temperature is increased by a factor of 2 (from 300K to 600K), NcNv is increased by a factor of 8.
Hence, the intrinsic carrier concentration at T = 600K is
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Since the dopant concentration is on the order of the intrinsic carrier concentration, the exact formula for n must be used:
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EF ( Ei = kT(ln(2.955/2.404) = 0.052 eV×0.206  = 0.0107 eV
The intrinsic Fermi level is located below midgap:
Ec  – Ei = Ec  – [(Ec+Ev)/2 + (kT/2)∙ln(Nv/Nc)] = (Ec – Ev)/2 – (kT/2)∙ln(Nv/Nc) = 0.515 eV + 0.012 eV = 0.527 eV
Hence Ec – EF = (Ec – Ei) – (EF – Ei) = 0.527 – 0.0107 = 0.516 eV
The energy band diagram is:
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Problem 3: Mobility and Drift
a) Resistivity is dependent on carrier mobility and carrier concentration.  Assuming that carrier concentration is relatively insensitive to variations in temperature around 300K, the temperature dependence of resistivity will be dictated by the temperature dependence of carrier mobility.  Therefore, in order to minimize variations in the resistivity (cf. Lecture 2 Slide 18) with changes in temperature around 300K, we need to minimize variations in carrier mobility with changes in temperature around 300K.  From Lecture 4 Slide 17 it can be seen that electron mobility is relatively insensitive to variation in temperature around 300K, if the dopant concentration is in the range 1018-1019 cm-3.  Thus, doping Si n-type to a concentration close to1019 cm-3 will minimize variations in resistivity resulting from changes in temperature around 300K.
b) Since hole drift velocity vdp = p∙Ep vdp / E  = 3.5×105/1000 = 350 cm2/Vs. 
i) Since pqmp*, where is the average time between scattering events and mp* is the hole conductivity effective mass, the mean free path l can be calculated as
l = ∙vth =(p mp*/q) ∙ vth  = 350×0.39×9.1×10-31×1.9×107/(1.6×10-19) ×10-4 cm = 0.014×10-4 cm = 14 nm
ii) From Lecture 4 Slide 16 the dopant concentration (NA) is ~1017 cm-3 for hole mobility = 350 cm2/Vs.  Thus, p = 1017 cm-3 and n = ni2/p = 103 cm-3.
Problem 4: Resistivity
a) i) Boron is an acceptor in Si, so the material is p-type with p = NA= 2×1016 cm-3 and electron concentration n = ni2/p = 5×103 cm-3. 
ii) Phosphorus is a donor in Si.  Since ND > NA, the material is n-type.  
The carrier concentrations are determined by the net dopant concentration, ND ( NA = 4×1016 cm-3, so that n = 4×1016 cm-3 and p = ni2/n = 2500 cm-3. 
The carrier mobilities are determined by the total dopant concentration, ND + NA = 8×1016 cm-3.  From the plot on Slide 16 of Lecture 4, electron mobility n ( 820 cm2/Vs and hole mobility p ( 370 cm2/Vs.
Since n >> p, resistivity ( 1/qnn = 1/[(1.6×10-19)(4×1016)(820)] = 0.19 Ω-cm
b) In order for the resistance (R=L/Wt) of a semiconductor region to be no larger than 100 ohms, its resistivity must not exceed 100(Wt/L = 100×100nm×2nm/10nm = 2000-nm = 2×10-4-cm.

From Slide 20 of Lecture 4, the dopant concentration that would be needed for n-type Si to have such a low resistivity is ~6×1020 cm-3.                                  
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