1. Mechanical Gram-Schmidt (Fall 2016 Final)

(a) Use Gram-Schmidt to find an orthonormal basis for the following three vectors.

$$\vec{v}_1 = \begin{bmatrix} \sqrt{2} \\ -\sqrt{2} \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} \sqrt{2} \\ 0 \\ -\sqrt{2} \end{bmatrix}$$

(b) Express \vec{v}_1 , \vec{v}_2 , and \vec{v}_3 as vectors in the basis you found in part (a).

2. Gram-Schmidt Properties

(a) If we are performing the Gram-Schmidt method on a set of vectors, does the order in which we take the vectors matter? Consider the following set of vectors.

$$\vec{v}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \ \vec{v}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

Perform Gram-Schmidt on these vectors first in the order \vec{v}_1 , \vec{v}_2 , \vec{v}_3 and then in the order \vec{v}_3 , \vec{v}_2 , \vec{v}_1 . Do you get the same answer?

(b) What happens when we perform Gram-Schmidt on a set of *n* vectors $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$, where only n-1 of them are linearly independent?

3. Orthonormal Projections

- (a) Suppose the $n \times m$ matrix **A** has linearly indpendent columns. The vector \vec{y} in \mathbb{R}^n is not in the subspace spanned by the columns of **A**. Show that the projection of \vec{y} onto the subspace spanned by the columns of **A** is $\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\vec{y}$.
- (b) Now suppose we perform gram schmidt on A to get a new matrix Q. Show that the projection of \vec{y} onto the subspace spanned by the columns of Q is now $QQ^T\vec{y}$.