EECS 16A Designing Information Devices and Systems I

1. Mechanical Gram-Schmidt (Fall 2016 Final)

(a) Use Gram-Schmidt to find an orthonormal basis for the following three vectors.

$$
\vec{v}_{1}=\left[\begin{array}{c}
\sqrt{2} \\
-\sqrt{2} \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}
\sqrt{2} \\
0 \\
-\sqrt{2}
\end{array}\right]
$$

(b) Express \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3} as vectors in the basis you found in part (a),

2. Gram-Schmidt Properties

(a) If we are performing the Gram-Schmidt method on a set of vectors, does the order in which we take the vectors matter? Consider the following set of vectors.

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Perform Gram-Schmidt on these vectors first in the order $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ and then in the order $\vec{v}_{3}, \vec{v}_{2}, \vec{v}_{1}$. Do you get the same answer?
(b) What happens when we perform Gram-Schmidt on a set of n vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}\right\}$, where only $n-1$ of them are linearly independent?

3. Orthonormal Projections

(a) Suppose the $n \times m$ matrix \mathbf{A} has linearly indpendent columns. The vector \vec{y} in \mathbb{R}^{n} is not in the subspace spanned by the columns of \mathbf{A}. Show that the projection of \vec{y} onto the subspace spanned by the columns of \mathbf{A} is $\mathbf{A}\left(\mathbf{A}^{\mathbf{T}} \mathbf{A}\right)^{-\mathbf{1}} \mathbf{A}^{\mathbf{T}} \vec{y}$.
(b) Now suppose we perform gram schmidt on \mathbf{A} to get a new matrix \mathbf{Q}. Show that the projection of \vec{y} onto the subspace spanned by the columns of \mathbf{Q} is now $\mathbf{Q Q}^{\mathbf{T}} \vec{y}$.

