EECS 16A Designing Information Devices and Systems I

1. Mechanical Inverses

In each part, determine whether the inverse of \mathbf{A} exists. If it exists, find it.
(a) $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right]$
(b) $\mathbf{A}=\left[\begin{array}{ll}5 & 4 \\ 1 & 1\end{array}\right]$
(c) $\mathbf{A}=\left[\begin{array}{llc}5 & 5 & 15 \\ 2 & 2 & 4 \\ 1 & 0 & 4\end{array}\right]$
(d) $\mathbf{A}=\left[\begin{array}{llc}5 & 5 & 15 \\ 2 & 2 & 4 \\ 1 & 1 & 4\end{array}\right]$

2. Visualizing Span

We are given a point \vec{c} that we want to get to, but we can only move in two directions: \vec{a} and \vec{b}. We know that to get to \vec{c}, we can travel along \vec{a} for some amount α, then change direction, and travel along \vec{b} for some amount β. We want to find these two scalars α and β, such that we reach point \vec{c}. That is, $\alpha \vec{a}+\beta \vec{b}=\vec{c}$.

(a) First, consider the case where $\vec{a}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \vec{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and $\vec{c}=\left[\begin{array}{c}-2 \\ 2\end{array}\right]$. Find the two scalars α and β, such that we reach point \vec{c}. What if $\vec{a}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$?
(b) Now formulate the general problem as a system of linear equations and write it in matrix form.

3. Span Proofs

Given some set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$, show the following:
(a)

$$
\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}=\operatorname{span}\left\{\alpha \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}, \text { where } \alpha \text { is a non-zero scalar }
$$

In other words, we can scale our spanning vectors and not change their span.
(b)

$$
\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}=\operatorname{span}\left\{\vec{v}_{2}, \vec{v}_{1}, \ldots, \vec{v}_{n}\right\}
$$

In other words, we can swap the order of our spanning vectors and not change their span.
(c)

$$
\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}=\operatorname{span}\left\{\vec{v}_{1}+\vec{v}_{2}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}
$$

In other words, we can replace one vector with the sum of itself and another vector and not change the span.

