EECS 16A Designing Information Devices and Systems I Fall 2017 Discussion 3A

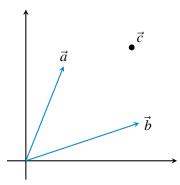
1. Mechanical Inverses

In each part, determine whether the inverse of A exists. If it exists, find it.

(a) $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}$ (b) $\mathbf{A} = \begin{bmatrix} 5 & 4 \\ 1 & 1 \end{bmatrix}$ (c) $\mathbf{A} = \begin{bmatrix} 5 & 5 & 15 \\ 2 & 2 & 4 \\ 1 & 0 & 4 \end{bmatrix}$ (d) $\mathbf{A} = \begin{bmatrix} 5 & 5 & 15 \\ 2 & 2 & 4 \\ 1 & 1 & 4 \end{bmatrix}$

2. Visualizing Span

We are given a point \vec{c} that we want to get to, but we can only move in two directions: \vec{a} and \vec{b} . We know that to get to \vec{c} , we can travel along \vec{a} for some amount α , then change direction, and travel along \vec{b} for some amount β . We want to find these two scalars α and β , such that we reach point \vec{c} . That is, $\alpha \vec{a} + \beta \vec{b} = \vec{c}$.



- (a) First, consider the case where $\vec{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and $\vec{c} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$. Find the two scalars α and β , such that we reach point \vec{c} . What if $\vec{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$?
- (b) Now formulate the general problem as a system of linear equations and write it in matrix form.

3. Span Proofs

Given some set of vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$, show the following:

(a)

span{ $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ } = span{ $\alpha \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ }, where α is a non-zero scalar

In other words, we can scale our spanning vectors and not change their span.

(b)

 $\operatorname{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\} = \operatorname{span}\{\vec{v}_2, \vec{v}_1, \dots, \vec{v}_n\}$

In other words, we can swap the order of our spanning vectors and not change their span.

(c)

$$\operatorname{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\} = \operatorname{span}\{\vec{v}_1 + \vec{v}_2, \vec{v}_2, \dots, \vec{v}_n\}$$

In other words, we can replace one vector with the sum of itself and another vector and not change the span.