EECS 16A Designing Information Devices and Systems I

Reference Definitions

Vector spaces: A vector space V is a set of elements that is closed under vector addition and scalar multiplication and contains a zero vector.

That is, if you add two vectors in V, your resulting vector will still be in V. If you multiply a vector in V by a scalar, your resulting vector will still be in V.

Subspaces: A subset W of a vector space V is a subspace of V if the above three conditions (closure under vector addition and scalar multiplication and existence of a zero vector) hold for the elements in the subspace W.

The vector spaces we will work with most commonly are \mathbb{R}^{n} and \mathbb{C}^{n} as well as their subspaces.

Basis: A basis for a vector space or subspace is an ordered set of linearly independent vectors that spans the vector space or subspace.
Therefore, if we want to check whether a set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ forms a basis for a vector space V, we check for two important properties:
(a) $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is linearly independent.
(b) $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}=V$

As we move along, we'll learn how to identify and construct a basis, and we'll also learn some interesting properties of bases.

Dimension: The dimension of a vector space is the minimum number of vectors needed to span the entire vector space. That is, the dimension of a vector space equals the number of vectors in a basis for this vector space.

1. Identifying a Basis

Does each of these sets of vectors describe a basis for some vector space?

$$
V_{1}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\} \quad V_{2}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} \quad V_{3}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

2. Constructing a Basis

Let's consider a subspace of \mathbb{R}^{3}, V, that has the following property: for every vector in V, the first entry is equal to two times the sum of the second and third entries. That is, if $\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \in V, a_{1}=2\left(a_{2}+a_{3}\right)$.
Find a basis for V. What is the dimension of V ?

3. Exploring Dimension, Linear Independence, and Basis

In this problem, we are going to talk about the connections between several concepts we have learned about in linear algebra - linear independence, dimension of a vector space/subspace, and basis.
Let's consider the vector space \mathbb{R}^{m} and a set of n vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ in \mathbb{R}^{m}.
(a) For the first part of the problem, let $m>n$. Can $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ form a basis for \mathbb{R}^{m} ? Why/why not? What conditions would we need?
(b) Let $m=n$. Can $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ form a basis for \mathbb{R}^{m} ? Why/why not? What conditions would we need?
(c) Now, let $m<n$. Can $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ form a basis for \mathbb{R}^{m} ? What vector space could they form a basis for?
Hint: Think about whether the vectors can be linearly independent.

4. Identifying a Subspace: Proof

Is the set

$$
V=\left\{\vec{v} \left\lvert\, \vec{v}=c\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+d\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right. \text {, where } c, d \in \mathbb{R}\right\}
$$

a subspace of \mathbb{R}^{3} ? Why/why not?

5. Exploring Column Spaces and Null Spaces

- The column space is the possible outputs of a transformation/function/linear operation. It is also the span of the column vectors of the matrix.
- The null space is the set of input vectors that output the zero vector.

For the following five matrices, answer the following questions:
i. What is the column space of \mathbf{A} ? What is its dimension?
ii. What is the null space of \mathbf{A} ? What is its dimension?
iii. Are the column spaces of the row reduced matrix \mathbf{A} and the original matrix \mathbf{A} the same?
iv. Do the columns of \mathbf{A} form a basis for \mathbb{R}^{2} (or \mathbb{R}^{3} for part (b))? Why or why not?
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 0 & 3 \\ 0 & -1 & -2\end{array}\right]$

