EECS 16A Designing Information Devices and Systems I

1. Row Operations and Determinants

In this question we explore the effect of row operations on the determinant of a matrix. Note that scaling a row by a will increase the determinant by a factor of a, and adding a multiple of one row to another will not change the determinant. Swapping two rows of a matrix and computing the determinant is equivalent to multiplying the determinant of the original matrix by -1 . The determinant of an identity matrix is 1 . Feel free to prove these properties to convince yourself that they hold for general square matrices.
(a) An upper triangular matrix is a matrix with zeros below its diagonal. For example a 3×3 upper triangular matrix is:

$$
\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & b_{2} & b_{3} \\
0 & 0 & c_{3}
\end{array}\right]
$$

By considering row operations and what they do to the determinant, argue that the determinant of a general $n \times n$ upper triangular matrix is the product of its diagonal entries if they are non-zero. For example, the determinant of the 3×3 matrix above is $a_{1} \cdot b_{2} \cdot c_{3}$ if $a_{1}, b_{2}, c_{3} \neq 0$.
(b) If the diagonal of an upper-triangular matrix has a zero entry, argue that its determinant is still the product of its diagonal entries.

2. Mechanical Eigenvalues and Eigenvectors

In each part, find the eigenvalues of the matrix \mathbf{M} and the associated eigenvectors.
(a) $\mathbf{M}=\left[\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right]$
(b) $\mathbf{M}=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$
(c) $\mathbf{M}=\left[\begin{array}{ccc}0 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3\end{array}\right]$
(d) $\mathbf{M}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$

