EECS 16A Designing Information Devices and Systems I

1. Op-Amps As Comparators

For each of the circuits shown below, plot $V_{\text {out }}$ for $V_{\text {in }}$ ranging from -10 V to 10 V for part (a) and from 0 V to 10 V for part (b). Let $A=100$ for your plots.
(a)

(b)

2. Modular Circuits

In this problem, we will explore the design of circuits that perform a set of (arbitrary) mathematical operations. (Note that the so-called analog signal processing - where these kinds of mathematical operations are performed on continuously-valued voltages by analog circuits - is extremely common in real-world applications; without this capability, essentially none of our radios or sensors would actually work.) Specifically, let's assume that we want to implement the block diagram shown below:

In other words, we want to implement a circuit with two outputs V_{x} and V_{y}, where $V_{x}=\frac{1}{2} V_{\text {in }}$ and $V_{y}=\frac{1}{3} V_{x}$.
(a) Design two voltage divider circuits that each independently would implement the two multiplications shown in the block diagram above (i.e., multiply by $1 / 2$ and multiply by $1 / 3$). Note that you do not need to include the input voltage sources in your design - you can simply define the input to each block as being at the appropriate potential (e.g., $V_{\text {in }}$ or V_{x}).
(b) Assuming that $V_{\text {in }}$ is created by an ideal voltage source, implement the original block diagram as a circuit by directly replacing each block with the designs you came up with in part (a).
(c) For the circuit from part (b), do you get the desired relationship between V_{y} and V_{x} ? How about between V_{x} and $V_{\text {in }}$? Be sure to explain why or why not each block retains its desired functionality.
(d) Now let's assume that we have discovered compose-able circuits that implement mathematical operations. In particular, we have these blocks that implement:
i. $V_{o}=5 V_{i}$
ii. $V_{o}=-2 V_{i}$
iii. $V_{o}=V_{i_{1}}+V_{i_{2}}$

Using just these blocks, draw the block diagram that implements:
i. $V_{o}=-12 V_{\mathrm{in}_{1}}$
ii. $V_{o}=-10 V_{\mathrm{in}_{1}}-2 V_{\mathrm{in}_{2}}$
iii. $V_{o}=-V_{\mathrm{in}_{1}}+V_{\mathrm{in}_{2}}$

3. Op-Amp Golden Rules

On the left is the equivalent circuit of an op-amp for reference.

(a) What are the currents flowing into the positive and negative terminals of the op-amp (i.e., what are I^{+} and $\left.I^{-}\right)$? What are some of the advantages of your answer with respect to using an op-amp in your circuit designs?
(b) Suppose we add a resistor of value R_{L} between $v_{\text {out }}$ and ground. What is the value of $v_{\text {out }}$? Does your answer depend on R_{L} ? In other words, how does R_{L} affect $A v_{\text {in }}$? What are the implications of this with respect to using op-amps in circuit design?
(c) Now consider the circuit on the right. Assuming that this is an ideal op-amp, what is $v_{\text {out }}$?
(d) Draw the equivalent circuit for this op-amp and calculate $v_{\text {out }}$ in terms of A, V, and R_{L}. Does $v_{\text {out }}$ depend on R_{L} ? What is $v_{\text {out }}$ in the limit as $A \rightarrow \infty$?

