Electrical Engineering and Computer Sciences

EECS 16A

# Your Instructors

Elad Alon
<u>elad@eecs</u>
519 Cory

 Anant Sahai <u>sahai@eecs</u> 267 Cory

- Other contributors to 16:
  - Gireeja Ranade, Ali Niknejad, Claire Tomlin, Michel Maharbiz, Laura Waller, Miki Lustig, Vivek Subramanian, Thomas Courtade, Babak Ayazifar, Vladimir Stojanovic

# Head GSIs

• Email: <u>olivia-ee16a@berkeley.edu</u>

Email with:

- Questions not for piazza
- All Conflicts
- Any Emergencies
- Administrative Questions

# Introduce TAs

• Many are returning 16A staff members

# And we have even more!

An army of Academic Student Employees...
– Former 16A students just like you ...

- The path to being on 16A staff
  - Do great in 16A
  - Become an Academic Student Employee
    - Grade homeworks, assist in labs, help out in OH, etc.

# Important Web Sites

• EECS 16A

http://inst.eecs.berkeley.edu/~ee16a/fa17/ OR http://ee16a.com

• Piazza

http://piazza.com/

# **Course Policies**

- Syllabus is on the course website at ee16a.com
- You are responsible for reading and following all course policies listed

# Some Important Notes

- *Freshman* are the target audience for 16A
  - Grading is absolute
  - Assume no prior background in linear algebra or physics
  - Maximize your chances for success by maintaining sustained effort in this class – see syllabus for more about this
  - No technology during lecture

# Some Important Notes

- If you are an L&S CS student graduating this semester
  - There is a long list of temporary alternatives you can take to fulfill the requirement
- If you are an L&S CS (intended) student and have taken Math 54 (and understood it)
  - You should probably take 16B, not 16A
  - You can sign up for EECS 47D to learn the circuits content from 16A

# Some Important Notes

- You can find more info about 47D on the 16A piazza
  - Contact Elad if you are interested in this option

# Final Important Note

- You should all be here to *learn* 
  - We have an extremely dedicated staff who are committed to helping you achieve that goal
- Cheating directly detracts from this goal
  - Any cheating we find will be immediately (with no prior warning/discussion) forwarded to the Office of Student Conduct
  - Do yourselves and us a favor and don't even think about doing it
    - If you need help, come talk to us the sooner the better

# **Content Introduction**



 All of these extract information from the real world and interact with it; we will be learning how to design and understand these devices & systems!

# 16A: Information Devices and Systems

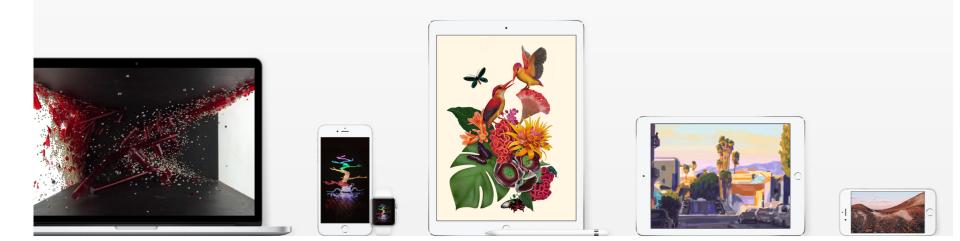
#### Imaging/Tomography and Google PageRank (~5 wks)

- Topics: Linear algebraic thinking and graphs
- Lab: Single-pixel imager
- Touchscreens (5 wks)
  - Topics: Linear circuits and design
  - Lab: Home-made R and C touchscreens
- Locationing and Least-Squares (4 wks)
  - Topics: Linear-algebraic optimization
  - Lab: Acoustic localization "GPS"

# EECS Upper Divs: What 16AB feed

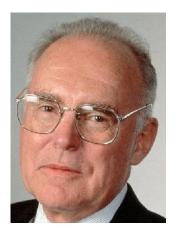
| 16AB        | Modeling<br>and<br>Algorithms | 170,<br>126,<br>188,              | <b>189, 120,</b><br><i>121,</i> 123,<br>174, 144, | Specific Domains          |                                             |
|-------------|-------------------------------|-----------------------------------|---------------------------------------------------|---------------------------|---------------------------------------------|
| 70          |                               |                                   |                                                   | 121, 122, 168<br>Comm+Net | 176, 145B CompBio,<br>Imaging               |
| 61 <b>B</b> | General 16                    | 127                               | 172<br>160, <i>168</i> ,<br>149                   | 191 Quantum               | 128, <b>106</b> , 192<br>Control + Robotics |
| 61A         |                               | 162,<br>161,<br>169               |                                                   | 184 Graphics              | 186 Databases                               |
| 61C         | boltware                      |                                   |                                                   | 164 Compilers             | 152 Computers                               |
|             | General<br>Hardware           | <mark>105</mark> ,<br>140,<br>151 | 130, 143,<br>145L                                 | 145MO Bio                 | 147 MEMS                                    |
|             |                               |                                   |                                                   | 117 Antennas              | 142 Comm ICs                                |
| 16AB        |                               |                                   |                                                   | 118 Optics                | 113, 137AB, 134<br>Power+SolarEnergy        |

# How Did We Get From This...



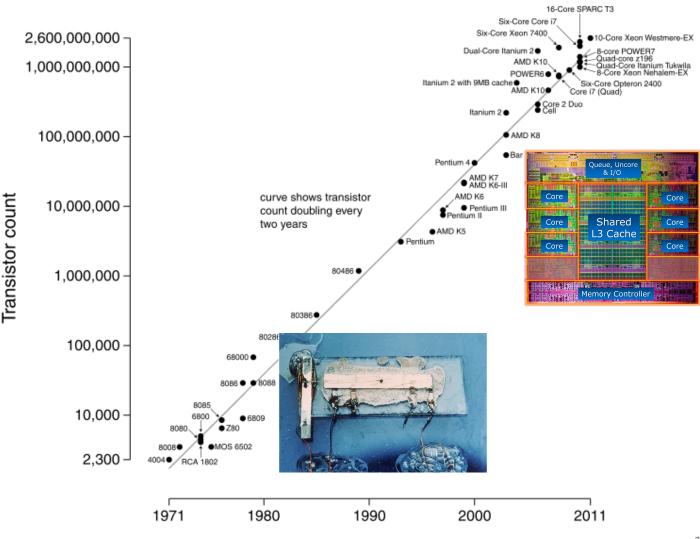




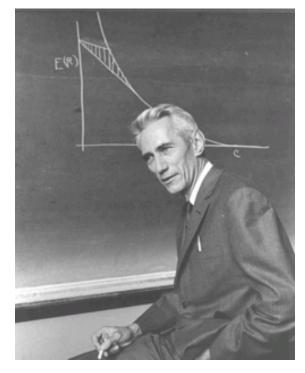






# Moore's Law

#### Microprocessor Transistor Counts 1971-2011 & Moore's Law






B.S. Cal 1950!



Date of introduction

# That's Just One Piece of the Puzzle...





1940's

# Where This is Used:



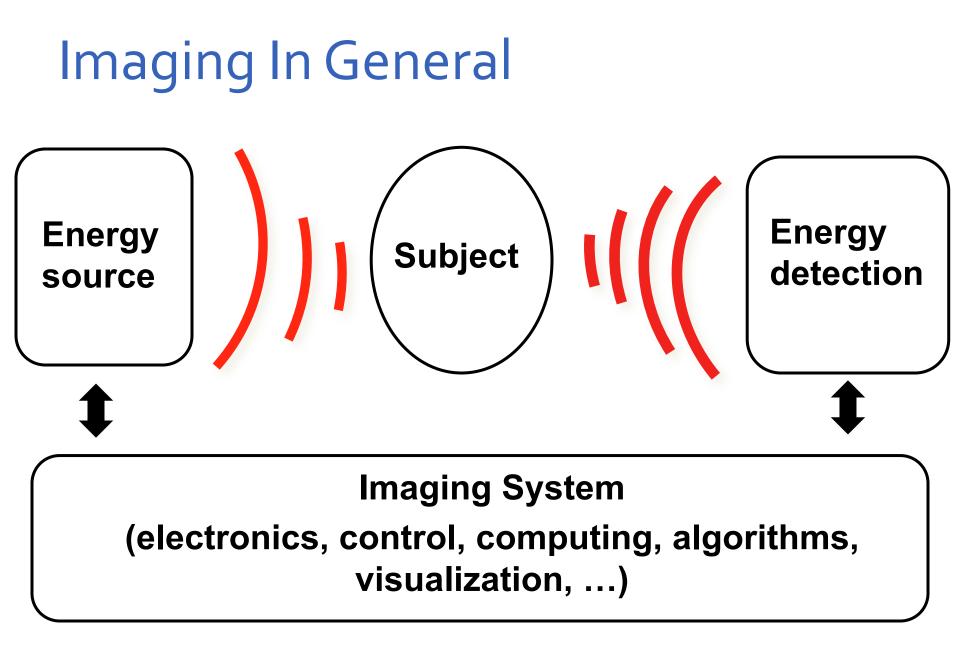
# Whom We're Training You to Be



# What Modern Systems Look Like (Intro to Module 1)

# Medical Imaging ca. 1895




# Medical Imaging Today

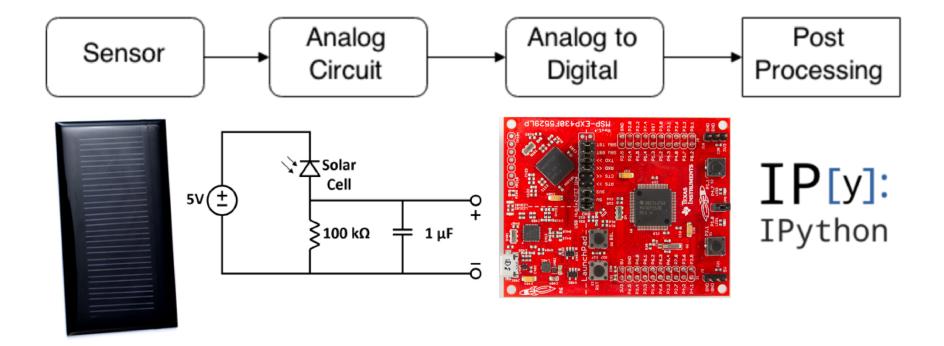
# X-Ray CT

All of these were enabled/dramatically advanced by the mathematical and hardware design techniques you will learn in this class!

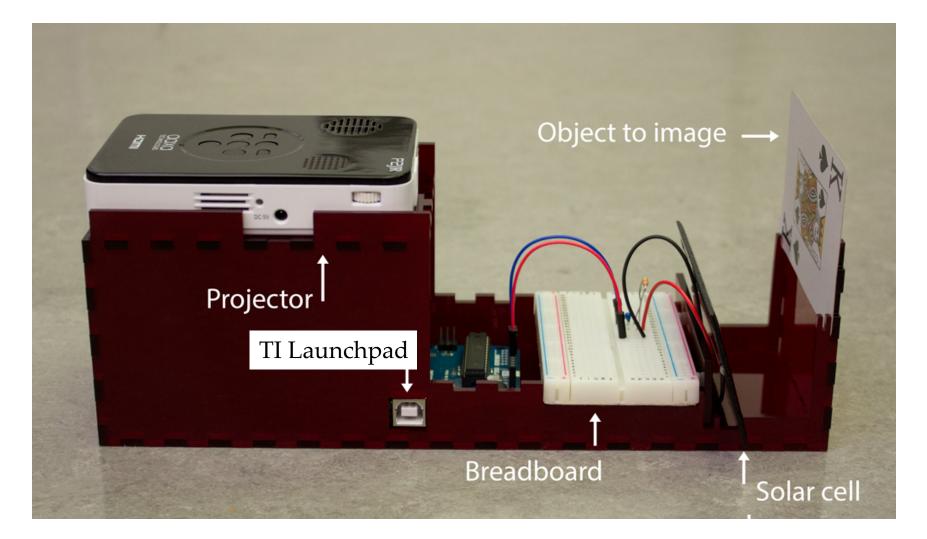







# Simplest Imaging System

 What is the absolute smallest number of components you need to make an imaging system?


# Simple Imager Example

# Simple Imager Example

# Imaging Lab #1



# Your Setup



# An Imager with Just One Sensor?

- After all, today's cameras have millions of pixels...
- Great teaching vehicle: you can actually get a lot out of surprisingly simple designs
  - Once you know the right techniques!
- In some systems the sources and/or detectors might actually be expensive
  - Take this opportunity to learn a little more about how detectors usually work
  - And how we get them to "talk" to our electronic systems

# More Complex Imaging Scenario

- What if we can't shine light (i.e., focus energy) either uniformly on all spots or in just one spot?
- The signal we receive on our detector will be a **linear combination** of several features of the image from different points.
- Can we recover the original image?
  - In many cases, yes!
  - Will start to see how next...