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Fall 2017 Official Lecture Notes Note 19- Draft

19.1 Comparator Review
Remember that the high level goal for a comparator is to take an analog voltage output and interface it with
a digital signal processor, e.g. to read a voltage divider output using your Launchpad (in lab).

Examine the circuit below of a comparator connected to our capacitive touchscreen model:
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Note some of the simplifications we have made in the model. For one, there are separate ground labels
instead of a “bottom” wire connecting all the ground nodes. Functionally this is the same, but as circuits
get more complicated drawing a large bottom wire can impair visual inspection. Also note that, instead of
drawing a full voltage source symbol for the rail of the op-amp, we use a new symbol with a horizontal
line and a voltage number. Again, this is functionally the same, but means we don’t have to add potentially
confusing additional elements to our model. If the label says 3.3V , you can assume that it is the positive
terminal of a voltage source with its negative terminal connected to the circuit’s ground.

Refer to Note 18 for more details on the functionality of this circuit. But remember: If the analog voltage
Vana is greater than Vre f , the output voltage Vout will be 3.3V . If Vana <Vre f , Vout will be 0V . Recall for Vana,
we have:

Vana =
Ceq, E1 - E2

Ceq, E1 - E2 +Cref
×Vs. (1)

When there is touching, Ceq, E1 - E2 =CE1 - E2 +∆C in which ∆C > 0, we have:
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Vana, touch =
CE1-E2 +∆C

CE1-E2 +∆C+Cre f
×Vs (2)

When there is no touching:

Vana, no-touch =
CE1-E2

CE1-E2 +Cre f
×Vs (3)

For any finite capacitance ∆C > 0, Vana, touch is always greater than Vana, no-touch.

A second important question is that how should we set up Cre f ?

The two open questions here are how do you pick the value for Vre f and how do you pick the value for Cre f ?
These two questions are intrinsically tied together. Typically they must be chosen together, where Cre f can
be picked almost arbitrarily and that choice subsequently drives our selection of Vre f . One constraint on Cre f

is that we don’t make it much larger than Ceq. Recall that Vana =
Ceq, E1 - E2

Ceq, E1 - E2+Cref
×Vs. We realize that Vana is

associated with Cref. As long as we do not set Cref to some value much greater (for example, 1000 times
greater) than Ceq,E1−E2 so that Vana becomes too small (for our op-amp to pick up the signal), we can get
some reasonable Vana, which then allows us to set up Vre f according to Vana, touch and Vana, no-touch. Practically,
we will set up one of Cre f , Vre f first, and then set up the other value according to Vre f =

1
2(Vana, touch−

Vana, no-touch). It turns out that making Cre f much larger than Ceq will limit the “swing” in the voltage, giving
us less tolerance for noise or variation (among other potential problems).

So if Cre f is chosen almost arbitrarily, is there a “best” value to place Vre f at? By best, we mean most robust
to variation/noise. It turns out yes there is a “best” place, and this place really is exactly halfway in between
the two points Vana,touch and Vana,no−touch as shown in the following graph:

(Vre f )(Vana,no−touch) (Vana,touch)

Vana

Vout
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19.2 Design example – DAC
Your Launchpad has a component called a digital to analog converter (DAC) that translates digital signals
into an output analog voltage. We’ll use a simple in a simple design problem. Our goal for this design is to
use a digital analog converter (DAC) to build a home audio system.

DAC

3.3V 10V

0V

The DAC takes in digital bits and converts them into an analog signal. Then this signal is fed into a speaker,
as illustrated on the right. The maximum voltage the DAC can produce is 3.3V, and the minimum voltage
the DAC can produce is 0V. However, you want the input voltage to the speaker to be between 0V and 10V
(in order to make the speaker loud enough). So somehow you want to be able to map voltages from 0 to 3.3V
to voltages from 0 to 10V. Suppose that we can model the speaker as an 8Ω resistor connected to ground
and we model the DAC with its Thevenin equivalent with voltage VT H and thevenin resistance RT H = 1kΩ.
What if we connect the DAC and the speaker directly? We will have the following circuit

−
+VT H

RT H=1kΩ

8Ω

+

−

Vspeaker

Now we can see that

Vspeaker =
8

8+1000
×VT H (4)

which is much smaller than VT H . This definitely won’t do what we would like.

What we really want in between the DAC and the speaker is something that provides a gain of roughly 3
(10/3.3) and acts as a buffer, i.e., that can measure the output voltage of the DAC, VDAC, without affecting
it, and for the output, we want to be able to draw any current the meet the spec. So we want something like
the following
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DAC

3.3V
×3

−
+

10V

0V

This looks just like the internal of an op amp! Now notice that based on what we know so far about op amps
as comparators, we can’t just scale the voltage linearly as we we would have wished: if we connect an ideal
op amp (infinite internal gain) with VDD = 10V and VSS = 0V , the output voltage would either be 10V or
0V , but not something in between. To achieve what we would like, we need another tool, which we will
introduce in the next section.

19.3 Negative feedback
Negative feedback is used just about everywhere, including electronics, biology, mechanics, robotics, and
more. The basic idea is that we measure an output, compare it to where we “want to be ” (i.e. some target
output), then adjust the inputs to get closer to that desired output. Let’s turn this high level description into
a more mathematical one.

Concretely, we want to get a certain known gain out of our op amp. Currently we have an op-amp with
some very large uncertain internal gain. We can describe this problem using a block diagram; a collection
of drawing (mathematical in nature) that operate on quantities of interest using simplified representations.

Let’s take a look at a generic block diagram for negative feedback systems.

input
A

output

f

+ error
−

feedback

The idea is we take the difference between the input and a scaled version (multiplied by f ) of the output,
which we call feedback, and apply gain A on it to again produce the output.

Observe that if the feedback signal for some system (e.g. noise) is increased), the error (input - feedback)
signal will decrease (move down), which then causes the output to go down as well, i.e., the loop has ability
to suppress the original change in the feedback signal!

Now we can kind of get an intuitive idea of how negative feedback can be useful. When we want to get a
system to have a desired output, negative feedback loops can help re-adjust to the value of the desired output
when theoutput is too high or too low relative to the target value.
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Now let’s see how negative feedback loops can be realized in op amps. Consider the following circuit:

−

+

R1

R2

−
+Vin

+

−
Vout

+

−
Vf b

V

−V

To help analyze circuits of this kind, we will introduce two "golden rules" that we could use to make our
lives simpler.

19.4 Golden Rules
Recalling the op amp symbol from previous lecture

−

+I+

I−
Vout

v+

v−

VDD

VSS

For an ideal op amp, the "golden rules" are

• (1) I+ = I− = 0. Now let’s think about why this is the case. Recall that the equivalent op amp circuit
is

v+

v−

+

−
+
− A(v+− v−)

Vout
+

−
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Notice that there is no closed circuit connected to the positive or negtiave input terminal of the op
amp. Thus, no current can flow into the positive or negative input terminal. Note that this rule holds
regardless of whether there is negative feedback or not.

• (2) V+ = V−: We will explain later why this is true, but intuitively this means that the "error signal"
going into the op amp must be zero. One important thing to note now is this rule only holds when
there is negative feedback.

A→ ∞ implies the Golden Rules. We will see this in homework.

Now let’s use the golden rules to analyze the circuit we saw earlier:

−

+I+

I−

R1

I1

R2

I2

−
+Vin

+

−
Vout

+

−
Vf b

V

−V

We know that by applying KCL at the junction between R1 and R2, we have

I1 = I2 + I−. (5)

By the first golden rule, we know that I+ = I− = 0. Hence,

I1 = I2. (6)

Now let’s apply the second golden rule, V+ =V−. Using this, we have

Vin =Vf b. (7)

Now we can solve for I2 using Ohm’s law, Vf b = I2R2, hence

I2 =
Vf b

R2
. (8)

Using Ohm’s law on R1, we also have Vout −Vf b = I1R1. Hence,

I1 =
Vout −Vf b

R1
. (9)

However, we know that I1 = I2, which gives us the following relationship

I1 =
Vout −Vf b

R1
=

Vf b

R2
= I2, (10)

EECS 16A, Fall 2017, Note 19- Draft 6



which is equivalent to

I1 =
Vout −Vin

R1
=

Vin

R2
= I2. (11)

Moving terms around, this gives us

Vout =Vin

(
1+

R1

R2

)
. (12)

Notice that here the ratio Vout
Vin

only depends on the ratio R1
R2

. This is a great property since it is rather difficult
to produce resistors with a particular absolute resistance. As long as the two resistors are produced with the
same error rate ε , i.e., they have resistance (1+ ε)R1 and (1+ ε)R2, the ratio between their resistance will
remain the same

(1+ ε)R1

(1+ ε)R2
=

R1

R2
. (13)

19.5 Second golden rule revisited
Recall that in the last section, we stated the second golden rule V+ =V−, i.e., the voltage at the positive input
terminal (relative to ground) and the voltage at the negative input terminal (relative to the same ground) are
the same when there is negative feedback. Now we would like to justify why this is the case. We return to
the block diagram we drew earlier for a general negative feedback loop, but now focus on its application in
circuits.

Vin
A

Vout

f

+ Verror

−

Vf b

Observe that if Vf b remains unchanged and Vin goes up, then Verror goes up. Then since A is a positive
number, Vout also goes up, which causes Vf b to go up. In other words, the magnitude of Verror goes down,
meaning that the system is going to stablize itself. Now what if we change the minus sign to a plus sign
in the diagram, i.e., changing the system into a positive feedback system. With a similar logic, you could
verify that if Vin goes up, Vf b goes up, but Verror goes up, which further causes Vout to go up. We see that it
is not possible to stabilize the system. Let’s look at the negative feedback op amp circuit we’ve seen earlier,
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−

+I+

I−

R1

I1

R2

I2

−
+Vin

+

−
Vout

+

−
Vf b

V

−V

We know that when Vin increases, Vout also increases since Vout = A
(
Vin−Vf b

)
. When Vout increases, Vf b =

R2
R1+R2

Vout also increases, which then cause Verror, and hence, Vout to go down. (Note in this case, f = R2
R1+R2

in the block diagram.) Now let’s derive why V+ = V− in this case. We know that in the above circuit,
V+ =Vin and V− =Vf b. Let’s redraw the block diagram.

V+
A

Vout

f

+ Verror

−

V−

Now when the system stablilizes, we have

Verror =V+−V− (14)

Vout = AVerror = A(V+−V−) (15)

V− = fVout (16)

Combining the last two equations, we have

Vout = A(V+− fVout) , (17)

which gives us

Vout (1+A f ) = AV+. (18)

Finally, we have

Vout =
A

1+A f
V+. (19)

Hence,

V− = fVout =
f A

1+A f
V+. (20)
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Now we know that the gain A is very large, hence f A is very large. Hence, the ratio

f A
1+A f

≈ 1. (21)

Thus, when A→ ∞ which is what we assume for an ideal op amp, V+ =V−.

19.6 Inverting op amp
Let’s apply what we’ve learned so far about Golden rules and negative feedback to the following op amp
circuit:

−

+

Rin Iin I−

R f I f

Vout

Vin

I+
V−

Given an ideal op-amp (with power rails of sufficiently large magnitude), what is Vout if we input an arbitrary
voltage of Vin?

The first golden rule says that I− = I+ = 0. Hence using KCL at the node labelled with voltage V−, we have

Iin = I−+ I f = 0+ I f = I f . (22)

We have

Iin = I f . (23)

Now, let’s apply the second golder rule, V+ =V−. Since the positive input terminal is connected to ground,
V− = 0. Hence, we have

V+ =V− = 0. (24)

By Ohm’s law,

Iin =
Vin−V−

Rin
=

Vin

Rin
(25)

I f =
V−−Vout

R f
=−Vout

R f
. (26)

Since Iin = I f , we have

Vin

Rin
=−Vout

R f
. (27)
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Moving terms around, we have

Vout =−
R f

Rin
Vin. (28)

Observe that the output voltage is a multiple of the input voltage with a scaling factor of − R f
Rin

. In addition,
notice that the Vout and Vin are of opposite signs. This type of circuit is what we call an inverting amplifier.

19.7 More complicated op amp example
Now let’s take a look at a slightly more complicated op amp circuit example with two voltage sources:

−

+I+

I−

R3

I3
+

−
Vout

R1

I1

−
+V1

R2

I2

−
+V2

V−

V

−V

First, let’s apply the first golden rule, I− = I+ = 0. Applying KCL at the node labelled V−, we have

I1 + I2 = I−+ I3 = 0+ I3 = I3. (29)

Hence, we have

I1 + I2 = I3. (30)

Now by the second golden rule and the fact that the positive input terminal is connected to ground, we have

V+ =V− = 0. (31)
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Applying Ohm’s law at each of the three resistors, we have

I1 =
V1−V−

R1
=

V1

R1
(32)

I2 =
V2−V−

R2
=

V2

R2
(33)

I3 =
V−−Vout

R3
=−Vout

R3
(34)

(35)

Plugging in the above result to the KCL equation I1 + I2 = I3 derived previously, we have

V1

R1
+

V2

R2
=−Vout

R3
. (36)

Multiplying both sides by R3, we have

Vout =−
R3

R1
V1−

R3

R2
V2, (37)

relating the final output with the two inputs V1 and V2.
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