
EECS 16A Designing Information Devices and Systems I
Fall 2017 Official Lecture Notes Note 28(Draft)

28.1 Speeding up OMP
In the last lecture note, we introduced orthogonal matching pursuit, an algorithm that can extract information
from sparse signals. Recall that in each iteration of the algorithm, we need to compute the projection of the
measurement vector~y onto the subspace spanned by the signatures computed so far. If we let A j be a matrix
whose columns are the ’songs’ found so far in iteration j and let ~r be the received signal, we compute

A j

(
AT

j A j

)−1
AT

j~r to get the projection of~r onto span(A j). Matrix inversion and matrix multiplication can

be computationally expensive - inversion is O(n3) and multiplication is O(n2). Is there a way to avoid doing
such computations? Yes! It turns out that if the columns of A j are mutually orthogonal to each other, the
projection of~r onto span(A j) is the sum of the projection of~r onto each of the columns of A j. Recall that
the projection of a vector~r on any other nonzero vector~b of the same size is

~rb =
~rT~b∥∥∥~b∥∥∥2

~b. (1)

This is fast to compute as computing the dot product of two vectors and the norm of a vector takes linear in
time in the number of components in the vectors.

Let’s take a look at the case where j = 2 and the signatures are mutually orthogonal. Suppose the songs

found so far are ~S1 and ~S2, i.e., A2 =

 | |
~S1 ~S2
| |

 . Since ~S1 and ~S2 are orthogonal to each other, we have

~S1
T ~S2 = 0. The least squares solution of A2~x =~r is given by:

~x =
(
AT

2 A2
)−1

AT
2~r. (2)

and we now multiply by A2 to obtain the projection of the least sqaures solution onto the subspace spanned
by A2:

~rA2 = A2
(
AT

2 A2
)−1

AT
2~r. (3)

EECS 16A, Fall 2017, Note 28(Draft) 1

Let’s first compute the term
(
AT

2 A2
)−1:

AT
2 A2 =

[
~S1

T

~S2
T

] | |
~S1 ~S2
| |

 (4)

=

[
~S1

T ~S1 ~S1
T ~S2

~S2
T ~S1 ~S2

T ~S2

]
(5)

=

∥∥∥~S1

∥∥∥2
0

0
∥∥∥~S2

∥∥∥2

 . (6)

(7)

Thus, we have

(
AT

2 A2
)−1

=

 1

‖~S1‖2 0

0 1

‖~S2‖2

 . (8)

Then the projection of~r onto span(A2) is

~rA2 = A2
(
AT

2 A2
)−1

AT
2~r (9)

=

 | |
~S1 ~S2
| |

 1

‖~S1‖2 0

0 1

‖~S2‖2

[~S1
T

~S2
T

]
~r (10)

=

 | |
~S1 ~S2
| |

 1

‖~S1‖2 0

0 1

‖~S2‖2

[~S1
T
~r

~S2
T
~r

]
(11)

=

 | |
~S1 ~S2
| |

~S1
T
~r

‖~S1‖2

~S2
T
~r

‖~S2‖2

 (12)

=

 ~S1
T
~r∥∥∥~S1

∥∥∥2

~S1 +

 ~S2
T
~r∥∥∥~S2

∥∥∥2

~S2. (13)

Observe that the first term in the sum above is the projection of~r onto ~S1 and the second term is the projection
of~r onto ~S2. Generalizing, the projection of~r onto span(An) where An has mutually orthogonal columns is

~rAn =

 ~S1
T
~r∥∥∥~S1

∥∥∥2

~S1 +

 ~S2
T
~r∥∥∥~S2

∥∥∥2

~S2 + · · ·+

 ~Sn
T
~r∥∥∥~Sn

∥∥∥2

~Sn. (14)

Furthermore, observe that if ~S1, . . . ,~Sn are unit vectors, i.e., they all have length 1, the above further reduces
to

~rAn =
(
~S1

T
~r
)
~S1 +

(
~S2

T
~r
)
~S2 + · · ·+

(
~Sn

T
~r
)
~Sn, (15)

EECS 16A, Fall 2017, Note 28(Draft) 2

which further reduces our computation.

We see that we can speed up OMP considerably if the songs ~S1, . . . ,~Sn are mutually orthogonal to each other
and are of unit length. Now the question is how do we convert any set of linearly independent vectors to
a set of mutually orthogonal unit vectors that span the same vector space? We will answer this in the next
section.

28.2 Gram Schmidt Process
Before we begin, let’s remind ourselves that the following subspaces are equivalent for any pairs of linearly
independent vectors~v1,~v2:

• span(~v1,~v2)

• span(~v1, α~v2)

• span(~v1,~v1 +~v2)

• span(~v1,~v1−~v2)

• span(~v1,~v2−α~v1)

Now what should α be if we would like~v1 and~v2−α~v1 to be orthogonal to each other? We want α~v1 to be
the projection of~v2 onto~v1. Let’s solve this algebraically using the definition of orthogonality:

~v1 and~v2−α~v1 are orthogonal (16)

⇔~vT
1 (~v2−α~v1) = 0 (17)

⇔~vT
1~v2−α ‖~v1‖2 = 0 (18)

⇔ α =
~vT

1~v2

‖~v1‖2 (19)

Definition 28.1 (Orthonormal): A set of vectors {~S1, . . . ,~Sn} is orthonormal if all the vectors are mutually
orthogonal to each other and all are of unit length.

Gram Schmidt is an algorithm that takes a set of linearly independent vectors {~S1, . . . ,~Sn} and generates
an orthonormal set of vectors {q1, . . . ,qn} that span the same vector space as the original set. Concretely,
{q1, . . . ,qn} needs to satisfy the following:

• span({S1, . . . ,Sn}) = span({q1, . . . ,qn})

• {q1, . . . ,qn} is an orthonormal set of vectors

Now let’s see how we can do this with a set of three vectors {~S1,~S2,~S3} that is linearly independent of each
other.

EECS 16A, Fall 2017, Note 28(Draft) 3

• Step 1: Find unit vector~q1 such that span({~q1}) = span({~S1}).
Since span({~S1}) is a one dimensional vector space, the unit vector that span the same vector space
would just be the normalized vector point at the same direction as ~S1. We have

~q1 =
~S1∥∥∥~S1

∥∥∥ . (20)

• Step 2: Given ~q1 from the previous step, find ~q2 such that span({~q1,~q2}) = span({~S1,~S2}) and
orthogonal to ~q1. We know that ~S2− (the projection of ~S2 on ~q1) would be orthogonal to ~q1 as seen
earlier. Hence, a vector~e2 orthogonal to~q1 where span({~q1,~e2}) = span({~S1,~S2}) is

~e2 =~S2−
(
~ST

2~q1

)
~q1. (21)

Normalizing, we have~q2 =
~e2
‖~e2‖ .

• Step 3: Now given~q1 and~q2 in the previous steps, we would like to find~q3 such that span({~q1,~q2,~q3})=
span({~S1,~S2,~S3}). We know that the projection of ~S3 onto the subspace spanned by~q1,~q2 is(

~ST
3~q2

)
~q2 +

(
~ST

3~q1

)
~q1. (22)

We know that

~e3 =~S3−
(
~ST

3~q2

)
~q2−

(
~ST

3~q1

)
~q1 (23)

is orthogonal to~q1 and~q2. Normalizing, we have~q3 =
~e3
‖~e3‖ .

We can generalize the above procedure for any number of linearly independent vectors as follows:

Inputs

• A set of linearly independent vectors {~S1, . . . ,~Sn}.

Outputs

• An orthonormal set of vectors {~q1, . . . ,~qn} where span({~S1, . . . ,~Sn}) = span({~q1, . . . ,~qn}).

Gram Schmidt Procedure

• compute ~q1 : ~q1 =
~S1

‖~S1‖

• for (i = 2 . . .n):

1. Compute the vector~ei, such that span({~q1, . . . ,~ei}) = span({~S1, . . . ,~Si}):
~ei =~Si−∑

i−1
j=1

(
~ST

i ~q j

)
~q j

2. compute ~qi : ~qi =
~ei
‖~ei‖

EECS 16A, Fall 2017, Note 28(Draft) 4

28.3 Implementing Gram Schmidt for OMP
Now we would like to use Gram Schmidt to speed up OMP. Recall the step in OMP that augments matrix A

with the newest version of the song: A = [A |
»

S(Ni)
i] and then uses least squares to obtain the message value:

~x = (AT A)−1AT~r. We now know that with each iteration, that computation gets harder and harder.

Therefore, let us now build a matrix Q containing orthonormal vectors to use as a subspace rather than A.
We can initialize Q = [] and once we identify a song, we can then perform Gram Schmidt on Q and the
song.

Procedure:

• Initialize the following values: ~y =~r, j = 1, k = 10, F = { /0}, Q = [], ~b0 = 0

• while ((j ≤ k) & (‖~y ‖≥ th)) :

1. Cross correlate ~y with the shifted versions of all songs. Find the song index, i, and the shifted

version of the song,
»

S(Ni)
i , with which the received signal has the highest correlation value.

2. Set ~v j =
»

S(Ni)
i

3. Add i to the set of song indices, F.

4. Perform Gram Schmidt on Q and ~v j

(a) Find ~e j which is ~v j− projection of ~v j onto Q : ~e j = ~v j−
(
~v j

T~q1
)
~q1−·· ·−

(
~v j

T~q j−1
)

~q j−1

(b) Find ~q j : ~q j =
~e j

‖~e j‖
(c) Column concatenate matrix Q with ~q j: Q = [Q | ~q j]

5. Now that vectors are orthonormal, can simply project received signal onto newest column and
add: ~b j = ~b j−1 +

(
~rT~q j

)
~q j

6. Update the residual value~y by subtracting: ~y =~r−~b j

7. Update the counter: j = j+1

EECS 16A, Fall 2017, Note 28(Draft) 5

