EECS 16BDesigning Information Devices and Systems IIFall 2017Miki Lustig and Michel MaharbizHomework 2

This homework is due September 12, 2017, at 11:59AM.

1. Two Inductors

Consider the circuit below, assume that when t < 0, the circuit has reached steady state ($V_1 = 0, V_2 = 0$). At t = 0, the switch connected to V_s closes. Assume $V_s = 5V$, $R_1 = R_2 = 1k\Omega$, and $L_1 = L_2 = 0.1$ H.

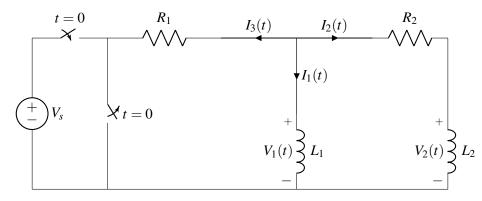


Figure 1: Two Inductor Circuit with Voltage Source

- (a) First, use Kirchoff's Laws and the inductor equation ($V = L\frac{dI}{dt}$) to find the second order differential equation for this system in terms of $I_2(t)$, L_1 , L_2 , R_1 , and R_2 .
- (b) Now cast this second order differential equation into the following form:

$$\frac{d\vec{i}}{dt} = A\vec{i}$$

where

$$\vec{i} = \begin{bmatrix} I_2(t) \\ \frac{dI_2(t)}{dt} \end{bmatrix}$$

Plug in values to get a numerical matrix.

- (c) Find the eigenvalues of A. Are they real or complex?
- (d) Using the initial conditions, what is the solution to the differential equation?
- (e) Sketch the current vs time plots of $I_1(t)$ and $I_2(t)$.

2. Complex numbers

A common way to visualize complex numbers is to use the complex plane. Recall that a complex number z is often represented in cartesian form.

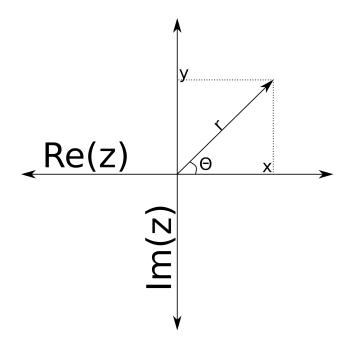


Figure 2: The complex plane

z = x + jy with real(z) = x and imaginary(z) = y

See the Figure 2 for how z looks like in the complex plane.

In this question, we will derive the polar form of a complex number and use this form to make some interesting conclusions.

- (a) Calculate the length of z in terms of x and y as shown in Figure 2. This is the magnitude of a complex number and is denoted |z| or r. *Hint*. Use the Pythagoras theorem.
- (b) Represent the real and imaginary parts of z in terms of r and θ .
- (c) Substitute for x and y in z. Use Euler's formula to conclude that,

$$z = re^{j\theta}$$

- (d) In the complex plane, draw out all the complex numbers such that |z| = 1. What are the *z* values where the figure intersects the real axis and the imaginary axis? Why do you think the figure is called a *Unit circle*?
- (e) If $z = re^{j\theta}$, prove that $z^* = re^{-j\theta}$. Recall that the complex conjugate of a complex number z = x + jy is $z^* = x jy$.
- (f) Show that,

 $r^2 = zz^*$

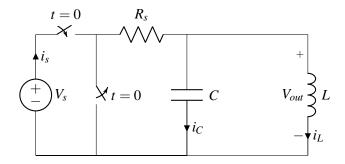
(g) Intuitively argue that,

$$\sum_{k=0}^{3-1} e^{j\frac{2\pi}{3}k} = 0$$

Do so by drawing out the different values of the sum making an argument based on the vector sum.

3. RLC circuit

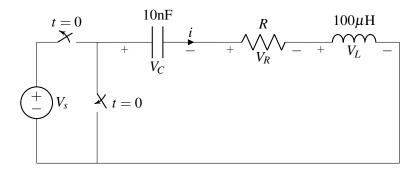
Now consider the circuit shown below:



- (a) Assuming the circuit reaches steady state for t < 0, find the differential equation for V_{out} for $t \ge 0$
- (b) What are the initial conditions at t = 0 for this differential equation?
- (c) Solve the differential equation. Consider all cases (underdamped, critically damped, overdamped)

4. General RLC response types

Consider the following circuit assume this circuit has reached steady state for t < 0:



- (a) Find the differential equation that describes this circuit for $t \ge 0$ and solve it in terms of V_s , L, R and C.
- (b) At what **frequency** is this circuit going to oscillate? Your answer should be in terms of R.
- (c) Sketch the transient response of $V_c(t)$ for $t \ge 0$ when $R = 100\Omega$
- (d) Sketch the transient response of $V_c(t)$ for $t \ge 0$ when $R = 200\Omega$
- (e) Sketch the transient response of $V_c(t)$ for $t \ge 0$ when $R = 1k\Omega$

Contributors:

- Kyle Tanghe.
- Siddharth Iyer.