

EE16B M. Lustig, EECS UC Berkeley
EE16B M. Lustig, EECS UC Berkeley

k-means

Given: $\quad \vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{m} \in \mathrm{R}^{n}$
Partition them into $\mathrm{k} \ll \mathrm{m}$ groups
0) Guess cluster centers to initialize

1) Group points around nearest center
2) Update cluster centers by averaging within group
3) If centers have changed, repeat 1-3

EE16B M. Lustig. EECS UC Berkeley

General k-means Algorithm

0) Initialize k cluster centers $\quad \vec{m}_{1}, \vec{m}_{2}, \cdots, \vec{m}_{k}$
1) Assign points to cluster: point \vec{x} goes to cluster i
if, $\quad\left\|\vec{x}-\vec{m}_{i}\right\|<\left\|\vec{x}-\vec{m}_{j}\right\| \quad \forall j \neq i$
2) Let S_{i} be the set of samples in cluster i recompute cluster centers:

$$
\vec{m}_{i}=\frac{1}{\left|S_{i}\right|} \sum_{\vec{x} \in S_{i}} \vec{x}
$$

3) If any m_{i} has changed, repeat 1-3

Objective Function

Find the clustering of $\vec{x}_{1}, \cdots, \vec{x}_{m}$ into sets S_{1}, \cdots, S_{k} which minimizes:

$$
D=\sum_{i=1}^{k} \sum_{\vec{x} \in S_{i}}\left\|\vec{x}-\mu_{i}\right\|
$$

$$
\mu_{i}=\frac{1}{\left|S_{i}\right|} \sum_{x \in S_{i}} \vec{x}
$$

While the algorithm decreases the objective, the objective is non-convex and can be stuck on local mimima.
General problem is N-P Complete

Management of intersections with multi-modal high-resolution

Ajith Muralidharan ${ }^{1}$, Samuel Coogan ${ }^{2}$, Christopher Flores, Pravin Varaiya *
Sensys Networks, Inc, Berkeley, CA 94710, United States

EE16B M. Lustig EECS UC Berkele

Traffic Patterns

 Hours of the daydays

What would k-means cluster to?
$\mathrm{K}=2$?
$\mathrm{K}=4$?
EE16B M. Lustig, EECS UC Berkeley

EE16B M. Lustig, EECS UC Berkeley

