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Sampling and Interpolation

The Sampling Theorem
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Interpolation with Basis Functions

Define:
(xi, yi) i = 1, 2, 3, · · · xi+1 � xi = � 8i

�(x)

�(0) = 1

�(k�) = 0 k = integer 6= 0

1 �(x)

y(x) =
1X

k=�1
yk�(x� k�)
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Example:

• Linear Interpolation
1

y(x) =
1X

k=�1
yk�(x� k�)

0 1�1

�(x)
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Example:

• Zero-Order Hold 1 �(x)

0 1�1

y(x) =
1X

k=�1
yk�(x� k�)
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What is common to all these logos?
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The sinc function

• Sinc:

sinc(x) =
sin(⇡x)

⇡x

)
⇢

sin(⇡x)
⇡x

x 6= 0
1 x = 0

1

1 2 3 4 5-1-2
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The sinc function

• Let 

then 

�(x) = sinc
⇣
x

�

⌘

�(k�) = sinc(k) =?
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�(k�) = sinc(k) =

⇢
0 k 6= 0
1 k = 0

The sinc function

• Let 

then 

�(x) = sinc
⇣
x

�

⌘

Interpolation with sinc:
y(x) =

1X

k=�1
yk�(x� k�)
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�(k�) = sinc(k) =

⇢
0 k 6= 0
1 k = 0

The sinc function

• Let 

then 

�(x) = sinc
⇣
x

�

⌘

Interpolation with sinc:
y(x) =

1X

k=�1
yk�(x� k�)

... ... 
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Bandlimitedness

• The sinc function does not contain frequencies 
beyond a certain bandwidth

sinc(x) =
1

⇡

Z ⇡

0
cos(!x)d!

x 6= 0

Sinc is an infinite sum of cosine functions with 
frequencies in the range
More in EE120, EE123! 

! 2 [0,⇡]
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Sampling and Recovey

• Due to Shanon – Nyquist 
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and obtain
yi = f (Di) i = 1, 2, 3, . . .

Then sinc interpolation between these data points gives:

f̂ (x) = Â
i

yif(x � Di) (4)

where
f(x) = sinc(x/D),

which is band-limited by p/D from (3). This means that f̂ (x) in (4)
contains frequencies ranging from 0 to p/D.

Now if f (x) involves frequencies smaller than p/D, then it is reason-
able to expect that it can be recovered from (4) which varies as fast as
f (x). In fact the shifted sinc functions f(x � Di) form a basis for the
space of functions2 that are band-limited by p/D and the formula (4) 2 for technical reasons this space is also

restricted to square integrable functionsis simply the representation of f (x) with respect to this basis.

Claude Shannon (1916-2001)

Harry Nyquist (1889-1976)

Sampling Theorem: If f (x) is band-limited by frequency

wmax <
p

D
(5)

then the sinc interpolation (4) recovers f (x), that is f̂ (x) = f (x).

By defining the sampling frequency ws = 2p/D, we can restate the
condition (5) as:

ws > 2wmax

which states that the function must be sampled faster than twice its
maximum frequency. The Sampling Theorem was proven by Claude
Shannon in the 1940s and was implicit in an earlier result by Harry
Nyquist. Both were researchers at the Bell Labs.

Example 1: Suppose we sample the function

f (x) = cos
✓

2p

3
x
◆

with period D = 1. This means that we take 3 samples in each period
of the cosine function, as shown in the figure below. Since wmax = 2p

3
and D = 1, the criterion (5) holds and we conclude that the sinc
interpolation (4) exactly recovers f (x).

3
21 x
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Claude Shannon 1916-2001 Harry Nyquist 1889-1976

https://www.newyorker.com/tech/elements/claude-shannon-the-father-of-the-information-age-turns-1100100 
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Sampling and Recovery

• Can we perfectly recover an analog signal from 
its samples?

y(x) = f(x)

y[n] = f(n�)

Analog signal:

Sample:

Interpolate:

=?f(x)
f̂(x) =

1X

n=�1
y[n]�(x� n�)
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Sampling a sinusoid

• What rate should you be sampling a sinusoid?
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Sampling Theorem

•  If f(x) is bandlimited by frequency wmax, then

!
max

<
⇡

�

f(x) = f̂(x) =
1X

n=�1
y[n]�(x� n�) �(x) = sinc

⇣
x

�

⌘

!s > 2!
max

fs =
1

�
> 2

!
max

2⇡
= 2f

max

As long as,

Proof: EE120, EE123
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Example 1

f(x) = cos(

2⇡

3

x) � = 1 !
max

<?
⇡

�

30
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Example 2

� = 1 !
max

<?
⇡

�
f(x) = cos(

4⇡

3

x)

30
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Example 2

� = 1 !
max

<?
⇡

�
f(x) = cos(

4⇡

3

x)

30
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Example 2

• Sinc interpolation gives:

� = 1 !
max

<?
⇡

�
f(x) = cos(

4⇡

3

x)

30

ˆ

f(x) = cos(

2⇡

3

x)

Aliasing of high frequencies 
into lower ones!
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Aliasing and Phase Reversal

• Highest interpolated frequency will not be 
higher than π

f(x) = cos(!x+ �)

y[n] = cos(!n+ �)

� = 1

y[n] = cos(!n+ �)= cos(2⇡n� (!n+ �))= cos((2⇡ � !)n� �)

cos(2⇡n� ✓) = cos(✓)

If  π < w < 2π  and Δ=1, there’s an equivalent 
lower frequency signal with the same samples! 

ˆ

f(x) = cos((2⇡ � !)x� �)
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Example 2

f(x) = cos(!x+ �)

� = 1

ˆ

f(x) = cos((2⇡ � !)x� �)

= cos(

2⇡

3

x)

! =
4⇡

3
� = 0
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Example 3

f(x) = sin(1.9⇡x) � = 1

= cos(1.9⇡x� ⇡

2

)

ˆ

f(x) = cos(0.1⇡x+

⇡

2

)

= � sin(0.1⇡x)


