EE16B

Designing Information Devices and Systems II

Lecture 12A
Discrete Signals and Systems

Discrete Time Signals

- Samples of a CT signal:

- Or, inherently discrete (Examples?)

Discrete Time Signals

- At their core are "just samples"!

Basic Sequences

- Unit Impulse

$$
\delta[n]= \begin{cases}1 & n=0 \\ 0 & n \neq 0\end{cases}
$$

- Unit Step

$$
U[n]= \begin{cases}1 & n \geq 0 \\ 0 & n<0\end{cases}
$$

Basic Sequences

-Exponential

$$
y[n]=\left\{\begin{array}{cc}
A \alpha^{n} & n \geq 0 \\
0 & n<0
\end{array}\right.
$$

Bounded

Discrete Sinusoids

$$
y[n]=A \cos \left(\omega_{0} n+\phi\right) \quad \text { or, } \quad y[n]=A \mathrm{e}^{j \omega_{0} n+j \phi}
$$

Q: Is $\mathrm{y}[\mathrm{n}]$ periodic? $\quad y[n+N]=y[n] \quad \mid N \in$ Integer

Q: Only if ω_{0} / π is rational

- To find fundamental period, N
- Find the smallest integers N,K:

$$
\omega_{0} N=2 \pi K
$$

Discrete Sinusoids

$$
\omega_{0} N=2 \pi K
$$

- Examples:

$$
\begin{array}{lll}
\cos (\pi / 5 n) & N=10 & K=1 \\
\cos \left(\frac{5 \pi}{7} n\right) & N=14 & K=5
\end{array}
$$

$$
\cos \left(\frac{5 \pi}{7} n\right)+\cos (\pi / 5 n) \quad \Rightarrow N=\text { S.C.M }\{10,14\}=70
$$

Discrete Sinusoids

Q: Which signal has a higher frequency?

$$
\cos (\pi n)
$$

$$
\cos \left(\frac{3 \pi}{2} n\right)=\cos \left(\frac{\pi}{2} n\right)
$$

Discrete Sinusoids

-What's the lowest discrete frequency?

$$
y[n]=\cos (0 n)=1
$$

-What's the highest discrete frequency?

$$
y[n]=\cos (\pi n)=(-1)^{n}
$$

Discrete Sinusoids
$\cos \left(w_{0} n\right)$

Discrete Sinusoids
$\cos \left(w_{0} n\right)$

Complex Frequencies

- Sinusoids are sums of left and right rotating complex exponentials

$$
2 \cos (\omega t)=e^{j \omega t}+e^{-j \omega t}
$$

"Positive" and "Negative" frequencies
Discrete frequencies with period N :

$$
y[n]=e^{j 2 \pi n / N}
$$

$$
W_{N} \triangleq e^{j 2 \pi / N} \Rightarrow y[n]=W_{N}^{n}
$$

Complex Frequencies

$$
W_{N} \triangleq e^{j 2 \pi / N} \Rightarrow y[n]=W_{N}^{n}
$$

- $N=4$

$$
y[n]=W_{4}^{n}
$$

- $\mathbf{N}=6$, neg. freq. $y[n]=W_{6}^{-n}$

Discrete Time Systems

- What Properties?
- Causality
- Linearity
- Stability
- Time/shift invariance
*WARNING: Going to interchange $x[n]$ and $u[n]$ as inputs
$\vec{x}[n]$ will be a state, not input
$\mathrm{U}[\mathrm{n}]$ is unit step, not to be confused with $u[n]$

Properties of D.T. Systems

- Causality:
- $y\left[n_{0}\right]$ depends only on $x[n]$ for $\infty \leq n \leq n_{0}$

Causal?

$$
\begin{aligned}
& \vec{x}[n+1]=A \vec{x}[n]+B u[n] \\
& y[n]=C \vec{x}[n] \\
& \vec{x}[n]=A^{n} \vec{x}[0]+\sum_{k=0}^{n-1} A^{n-1-k} B u[k] \\
& y[n]=C A^{n} \vec{x}[0]+\sum_{k=0}^{n-1} C A^{n-1-k} B u[k]
\end{aligned}
$$

Properties of D.T. Systems

$$
y[n]=F\{x[n]\}
$$

- Linearity
- Homogeneity: scaling the input, scales the output

$$
F\{a x[n]\}=a F\{x[n]\}=a y[n]
$$

Properties of D.T. Systems

$$
y[n]=F\{x[n]\}
$$

- Linearity
- Homogeneity: scaling the input, scales the output

$$
F\{a x[n]\}=a F\{x[n]\}=a y[n]
$$

- Superposition: sum of inputs \Rightarrow sum of outputs

$$
F\left\{x_{1}[n]+x_{2}[n]\right\}=F\left\{x_{1}[n]\right\}+F\left\{x_{2}[n]\right\}=y_{1}[n]+y_{2}[n]
$$

Example:

$$
\begin{aligned}
& \vec{x}[n+1]=A \vec{x}[n]+B u[n] \\
& y[n]=C \vec{x}[n]
\end{aligned}
$$

Linear?

$$
y[n]=C A^{n} \vec{x}[0]+\sum_{k=0}^{n-1} C A^{n-1-k} B u[k]
$$

Properties of D.T. Systems

$$
y[n]=F\{x[n]\}
$$

- BIBO Stability
- If $x[n]$ is bounded, then $y[n]$ is bounded

$$
|x[n]|<M<\infty \quad \forall n \Rightarrow|y[n]|<P<\infty \quad \forall n
$$

BIBO stable?

$$
y[n]=C A^{n} \vec{x}[0]+\sum_{k=0}^{n-1} C A^{n-1-k} B u[k]
$$

Properties of D.T. Systems

$$
y[n]=F\{x[n]\}
$$

- Time Invariance: Shifted input \Rightarrow shifted output

$$
y\left[n-n_{0}\right]=F\left\{x\left[n-n_{0}\right]\right\}
$$

Time Invariant? $\quad \vec{x}[n+1]=A \vec{x}[n]+B u[n]$

$$
y[n]=C \vec{x}[n]
$$

$$
y[n]=C A^{n} \vec{x}[0]+C B u[n-1]+C A B u[n-2]+\cdots+C A^{n-1} B u[0]
$$

Linear Time Invariant Systems

- Linear Time Invariant (LTI) systems are completely characterized by their impulse response $h[n]$

$\mathrm{h}[\mathrm{n}]$ is the "DNA" of an LTI system
Knowing $h[n]$ is enough to find $y[n]$ for ANY $x[n]$!

Linear Time Invariant Systems

- Decompose x[n]:

$$
\begin{aligned}
& x[n]=\sum_{m=-\infty}^{\infty} x[m] \delta[n-m] \\
& = \begin{cases}1 & n=m \\
0 & n \neq m\end{cases}
\end{aligned}
$$

- Compute output:

$$
y[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]=x[n] * h[n]
$$

Sum of weighted, delayed impulse responses!

Example:

$$
\begin{aligned}
& y[n]=a y[n-1]+u[n] \\
& h[n]=\left\{\begin{array}{cc}
a^{n} & n \geq 0 \\
0 & n<0
\end{array}\right.
\end{aligned}
$$

Infinite impulse response (IIR)

finite impulse response (FIR)

$$
\begin{aligned}
& y[n]=x[n]+x[n-1] \\
& h[n]=\delta[n]+\delta[n-1]
\end{aligned}
$$

FIR Example:

$$
\begin{aligned}
x[n]= & \left\{\begin{array}{cc}
n+(-1)^{n} & 0 \leq n \leq 10 \\
0 & \text { otherwise }
\end{array}\right. \\
y[n]= & x[n] / 2+x[n-1] / 2 \quad y[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m] \\
& \ldots \\
& \\
& \\
& \ldots \\
& \\
&
\end{aligned}
$$

