EE16B
 Designing Information Devices and Systems II

Lecture 14B
Convolutions using the DFT

Modulation and Circular shift

Modulation - Circular shift

$$
\begin{aligned}
& x[n] e^{j \frac{2 \pi n}{N} k_{0}}=x[n] W_{N}^{n k_{0}} \Rightarrow X\left[\bmod _{N}\left(k-k_{0}\right)\right] \\
& \Rightarrow \mathrm{DFT}_{N}\left\{x[n] W_{N}^{n k_{0}}\right\}=\sum_{n=0}^{N-1} x[n] W_{N}^{n k_{0}} W_{N}^{-n k} \\
&=\sum_{n=0}^{N-1} x[n] W_{N}^{-n\left(k-k_{0}\right)}=X\left[\bmod _{N}\left(k-k_{0}\right)\right]
\end{aligned}
$$

Similarly, circular shift - modulation

$$
x\left[\bmod _{N}\left(n-n_{0}\right)\right] \Rightarrow X[k] W_{N}^{-k n_{0}}
$$

DFT Matrix and Circulant Matrices

- DFT diagonalizes Circulant matrices:

$$
\begin{aligned}
& C=\left[\begin{array}{ccccc}
c[0] & c[N-1] & \ldots & c[2] & c[1] \\
c[1] & c[0] & c[N-1] & & c[2] \\
\vdots & c[1] & c[0] & \ddots & \vdots \\
c[N-2] & \vdots & \ddots & \ddots & c[N-1] \\
c[N-1] & c[N-2] & \cdots & c[1] & c[0]
\end{array}\right] \\
& F^{*} C F=\sqrt{N}\left[\begin{array}{llll}
C[0] & & & \\
& C[1] & & \\
& & \ddots & \\
& & & C[N-1]
\end{array}\right] \\
& \text { where, } \vec{C}=F^{*} \vec{c}
\end{aligned}
$$

DFT Matrix and Circulant Matrices

$$
F^{*}\left[\begin{array}{ccccc}
c[0] & c[N-1] & \cdots & c[2] & c[1] \\
c[1] & c[0] & c[N-1] & & c[2] \\
\vdots & c[1] & c[0] & \ddots & \vdots \\
c[N-2] & \vdots & \ddots & \ddots & c[N-1] \\
c[N-1] & c[N-2] & \cdots & c[1] & c[0]
\end{array}\right] F=\left[\begin{array}{cccc}
C[0] & C[0] & & C[0] \\
C[1] & W_{N}^{-1.1} C[1] & & W_{N}^{-(N-1) 1} C[1] \\
C[k] & W_{N}^{-1 \cdot k} C[k] & \cdots & \cdots \\
W_{N}^{-(N-1) k} C[k] \\
C[N-1] & W_{N}^{-1 \cdot(N-1)} C[N-1] & \vdots & W_{N}^{-(N-1)(N-1)} C[N-1]
\end{array}\right] F
$$

$$
=\left[\begin{array}{cccc}
C[0] & & & 0 \\
& C[1] & & \\
& & \ddots & \\
0 & & & C[N-1]
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & & 1 \\
1 & W_{N}^{-1 \cdot 1} & & W_{N}^{-(N-1) 1} \\
1 & W_{N}^{-1 \cdot k} & \ldots & \vdots \\
1 & W_{N}^{-1 \cdot(N-1)} & \vdots & W_{N}^{-(N-1) k} \\
& & & W_{N}^{-(N-1)(N-1)}
\end{array}\right] F
$$

$$
=\sqrt{N}\left[\begin{array}{cccc}
C[0] & & & 0 \\
& C[1] & & \\
& & \ddots & \\
0 & & & C[N-1]
\end{array}\right] F^{*} F=\sqrt{N}\left[\begin{array}{cccc}
C[0] & & & 0 \\
& C[1] & & \\
& & \ddots & \\
0 & & & C[N-1]
\end{array}\right]
$$

Fast Circulant Matrix Vector Multiplication

- Given: $\vec{X}=F^{*} \vec{x} \quad \vec{C}=F^{*} \vec{c} \quad \vec{Y}=F^{*} \vec{y}$

$C \leftarrow$ circulant

- If, $\vec{y}=C \vec{x}$ then, $\vec{Y}=\sqrt{N}(\vec{C} \cdot \vec{X})$

$$
\begin{aligned}
& F^{*} \vec{y}=F^{*} C \vec{x} \\
& F^{*} \vec{y}=F^{*} C F F^{*} \vec{x} \\
& \vec{Y}=\sqrt{N}\left[\begin{array}{llll}
C^{[0]} & & & 0 \\
& C[1] & & \\
0 & & \ddots & \\
0[N-1]
\end{array}\right] \vec{X}
\end{aligned}
$$

Fast Circulant Matrix Vector Multiplication

-Why bother?

- Option I, compute: $\vec{y}=C \vec{x} \quad \Rightarrow O\left(N^{2}\right)$
- Option II, compute: $\vec{y}=F\left(\left(F^{*} \vec{c}\right) \cdot\left(F^{*} \vec{x}\right)\right) \Rightarrow O\left(N^{2}\right)$

Using the fast Fourier Transform (FFT) calculation of the DFT (and inverse) is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$

For $N=1000: \quad N^{2}=1,048,576$ whereas, $\quad N \log N=10240$

Fast Convolution Sum using the DFT

- We can write linear operators on finite sequences as matrix vector multiplication
- Recall... convolution sum.....

Graphical Example of Convolution

Graphical Example of Convolution

Graphical Example of Convolution

$$
y[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

Graphical Example of Convolution

Graphical Example of Convolution

$$
y[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

Example:

If $\mathrm{h}[\mathrm{n}]$ is length 2 and $\mathrm{x}[\mathrm{n}]$ is length 5 , what is the length of their convolution sum?

Example

$$
\left[\begin{array}{l}
y[0] \\
y[1] \\
y[2] \\
y[3] \\
y[4] \\
y[5]
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
& & & & \\
& & & & \\
& & & & \\
& & & &
\end{array}\right]\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4]
\end{array}\right]
$$

Example

$$
\left[\begin{array}{l}
y[0] \\
y[1] \\
y[2] \\
y[3] \\
y[4] \\
y[5]
\end{array}\right]=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
& & & & \\
& & & & \\
& & & &
\end{array}\right]\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4]
\end{array}\right]
$$

Example

$$
\left[\begin{array}{l}
y[0] \\
y[1] \\
y[2] \\
y[3] \\
y[4] \\
y[5]
\end{array}\right]=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
& & & & \\
& & & &
\end{array}\right]\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4]
\end{array}\right]
$$

Example

$$
\left[\begin{array}{l}
y[0] \\
y[1] \\
y[2] \\
y[3] \\
y[4] \\
y[5]
\end{array}\right]=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4]
\end{array}\right]
$$

- This matrix is called a Toeplitz matrix
- But.. Not square... not circulant....

Example

- Convert system to be square circulant by zero-padding

$$
\left[\begin{array}{l}
y[0] \\
y[1] \\
y[2] \\
y[3] \\
y[4] \\
y[5]
\end{array}\right]=\left[\begin{array}{rrrrrc}
1 & 0 & 0 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4] \\
0
\end{array}\right]
$$

- Now can compute using the DFT!

General Case for Convolution Sum

- Given: $\vec{h} \in \mathrm{R}^{M} \quad \vec{x} \in \mathrm{R}^{N}$
- Zeropad both to $\mathrm{M}+\mathrm{N}-1 \quad \vec{h}_{\mathrm{zp}} \in \mathrm{R}^{N+M-1} \quad \vec{x}_{\mathrm{zp}} \in \mathrm{R}^{N+M-1}$
- Compute: $\vec{H}=F^{*} \vec{h}_{\mathrm{zp}} \quad \vec{X}=F^{*} \vec{x}_{\mathrm{zp}}$

$$
\vec{Y}=\vec{H} \cdot \vec{X}
$$

- Finally: $\vec{y}=F \vec{Y}$

Spectrum of filtering?

- Example:

Intro to MRI - The NMR signal

- Signal from ${ }^{1} \mathrm{H}$ (mostly water)
- Magnetic field \Rightarrow Magnetization
- Radio frequency \Rightarrow Excitation
- Frequency \propto Magnetic field

frequency

Intro to MRI - The NMR signal

- Signal from ${ }^{1} \mathrm{H}$ (mostly water)
- Magnetic field \Rightarrow Magnetization
- Radio frequency \Rightarrow Excitation
- Frequency \propto Magnetic field

frequency

Intro to MRI - Imaging

- B_{0} Missing spatial information

time

frequency

Phone Imaging I

Intro to MRI - Imaging

- B_{0} Missing spatial information
- Add gradient field, G

Intro to MRI - Imaging

- B_{0} Missing spatial information
- Add gradient field, G
- Mapping: spatial position \Rightarrow frequency
time

Phone Imaging II

MR Imaging

Where from here....

Readers: Khanh Dang, Simon Kuang, Eilam Levitov, Chris Powers
Lab Assistants: Rebecca Abraham, Sukrit Arora, Tiffany Cappellari, Julian Chan, Austin Chi, Tiffany Chien, Ilya Chugunov, Kenneth Gourley, Raymond Gu, Daniel Ho, Alyssa Huang, Adarsh Karnati, Jae Min Kim, Rohan Konnur, Jonathan Lee, Victor Lee, Sally Li, Chufan Liang, Mia Mirkovic, Andrea Padron, Dinesh Parimi, Grace Park, Varsha Ramakrishnan, Aria Rostamiasrabadi, Amay Saxena, Bilal Sheikh, Celine Veys, Bernie Wang, Daniel Zu

