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I took the above picture a couple of days ago while flying over Chicago. The flight 
entertainment did not work, so I opened Matlab and computed the DTFT in the 
horizontal axis, which its magnitude is displayed as an image

1) Explain the image above showing the result of computing a DTFT in the x direction.
2) How can you calculate the approximate number of vertical streets from the spectrum 

of the cross section?
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Modulation and Circular shift

Similarly, circular shift - modulation

Modulation – Circular shift
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DFT Matrix and Circulant Matrices

• DFT diagonalizes Circulant matrices:
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DFT Matrix and Circulant Matrices
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• If,                   then,  

Fast Circulant Matrix Vector Multiplication

• Given :
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Fast Circulant Matrix Vector Multiplication

• Why bother?
• Option I,  compute: 

• Option II,  compute: 

Using the fast Fourier Transform (FFT)  
calculation of the DFT (and inverse) is O(N log N)

For N = 1000:   N2 = 1,048,576 whereas,    N log N = 10240 
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Fast Convolution Sum using the DFT

• We can write linear operators on finite 
sequences as matrix vector multiplication

• Recall… convolution sum.....
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Graphical Example of Convolution

1 2 3 4 5 6 70 8 9 10-1
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Example:
If h[n] is length 2 and x[n] is length 5, what is the
length of their convolution sum?

1 2 3 401 2 3 40 1 2 3 4 50
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Example

1 2 3 40

1 2 3 40
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1 2 3 40

1 2 3 40

Example
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1 2 3 40
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Example

• This matrix is called a Toeplitz matrix
– But.. Not square… not circulant....
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Example
• Convert system to be square circulant by zero-padding 

• Now can compute using the DFT!
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General Case for Convolution Sum

• Given: 

• Zeropad both to M+N-1

• Compute: 

• Finally:
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Spectrum of filtering?

• Example:
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Intro to MRI - The NMR signal
B0

γB0

time frequency

• Signal from 1H (mostly water) 

• Magnetic field ⇒ Magnetization 

• Radio frequency ⇒ Excitation 

• Frequency ∝ Magnetic field 
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Intro to MRI - The NMR signal
• Signal from 1H (mostly water) 

• Magnetic field ⇒ Magnetization 

• Radio frequency ⇒ Excitation 

• Frequency ∝ Magnetic field 

γB0

B0

time frequency

γB0
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Intro to MRI - Imaging

γB0

center

B0

time frequency

• B0 Missing spatial information 
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Phone Imaging I
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Intro to MRI - Imaging
B0

center

γB0

G

Stronger  
field

Weaker  
field

unchanged

time frequency

• B0 Missing spatial information 

• Add gradient field, G 
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Intro to MRI - Imaging
B0

Reference (γB0)

center

time

• B0 Missing spatial information 

• Add gradient field, G  
• Mapping: 

spatial position ⇒ frequency

G

0

frequency
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Phone Imaging II
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MR Imaging
magnitude k-space (Raw Data) Image

Fourier transform

Video courtesy Brian Hargreaves

Fourier



EE16B M. Lustig,  EECS UC Berkeley

Where from here….
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