
EECS 16B Designing Information Devices and Systems II
Fall 2017 Note 3

1 Second Order Differential Equations

Second order differential equations appear everywhere in the real world. In this note, we will walk through
how to solve them in order to understand second order circuits.

1.1 Degree of a differential equation

Consider a differential equation of the form,

dny
dtn (t)+an−1

dn−1y
dtn−1 (t)+ · · ·+a1

dy
dt

(t)+a0y(t) = 0

The degree of the above differential equation is n.

1.2 Theorem: Existence and Uniqueness of Solutions to Differential Equa-
tions

Given a nth order differential equation and n initial conditions,

y(0) = d0,
dy
dt (t0) = d1, · · · , dn−1y

dtn−1 (t0) = dn−1 (1)

there exists a singe unique solution (say, f ). We will not prove this in this class.

1.3 First order differential equations

Consider the following simple equation.

dy
dt (t) = y(t) with y(0) = 1 (2)

This is our starting point. The solution to (2) will set the first building block to solving second order circuits.
We are looking for the "eigenvector" of the differentiation operator that corresponds to an eigenvalue of 1.
Given the linear nature of the derivative operator, attempting to characterize the eigenvector is a big step
towards understanding its nature.

Getting back to the problem at hand, we see that the function f (t) = et satisfies the equation in (2) as well
as the initial conditions. The Existence and Uniqueness of Solutions to Differential Equations Theorem
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Figure 1: A second order circuit

states that there exists only one solution for a given initial condition, so we do not need to search for more.
Furthermore, f (t) = et is an eigenvector of the differentiation operator.

What about finding these "eigenfunctions" with some eigenvalue λ?

dy
dt

(t) = λy(t) with y(0) = c

The solution is,
y(t) = ceλ t

With this, we have all the building blocks we need to solve much more complicated differential equations.

1.4 Example of a second order circuit

Consider a circuit like in Figure 1. Assume the switch is open up to time 0. Let the voltage of Capacitor 2
at time 0 be 0 and let the current at passing through Capacitor 2 at time 0 be 0. This tells us that,

VC2(0) = 0 and
dVC2

dt (0) = 0 (3)

We want to figure out how the voltage across Capacitor 2 evolves after we close the switch at time 0.

To do so, we will apply KCL to Node A. We get that,

i1 + i2 + i3 = 0 (4)

This tells us that,

VR1

R1
+C1

dVC1
dt +C2

dVC2
dt = 0 (5)

We have used the capacitor equation. Note the negative signs. This is to take into account the manner in
which we have drawn the voltage signs in the diagram. In this case, because of the zero, it does not matter
but it is good practice to always keep in mind the direction of voltage drops according to the diagram.
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Observe that,

VR1 =VC1 (6)

This is because we are comparing the same two points across two different paths. Recall that the voltage
difference between two points should always be the same regardless of the different paths between the two
points. Using a similar argument,

VC1 =VC2 + i3R2 where i3 =C2
dVC2

dt (7)

Combining (5), (6) and (7), we get the following.

C1C2R2
d2VC2

dt2 +

(
C1 +C2 +C2

R2

R1

)
dVC2

dt +
VC2

R1
= 0 (8)

Equations like (8) pop up all the time. We’re going to now present a straight forward way of solving such
differential equations using linear algebra!

1.5 Solving a general second order differential equation
Consider a general second order differential equation of the form,

d2y
dt2 (t)+a1

dy
dt (t)+a0y(t) = 0 (9)

This can be written in matrix-vector form as,[
dy
dt (t)
d2y
dt2 (t)

]
︸ ︷︷ ︸

d~x
dt

=

[
0 1

−a0 −a1

]
︸ ︷︷ ︸

A

[
y(t)
dy
dt (t)

]
︸ ︷︷ ︸

~x

(10)

Observe that~x is a 2D vector consisting of x(t) and dx
dt (t) as coordinates. (10) is written in short form as,

d~x
dt = A~x (11)

We recast (9) to (11) in order to exploit the matrix structure of A and the linear properties of the differen-
tiation operator d(·)

dt . Particular, we are going to diagonalize A to exploit what we know about first order
differential equations.

Let P be a matrix whose columns consist of eigenvectors of A. Let D be a diagonal matrix consisting of the
eigenvalues (λ1,λ2) of A and let P−1 be the inverse of matrix P. We know that,

A = PDP−1

Applying this to (11), we get,

P−1 d~x
dt = DP−1~x (12)
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Recall that multiplying vector~x by P−1 finds the coordinates of~x with respect to the columns of P. Define
~z as follows.

~z = P−1~x

Then, we have that,

d
dt~x(t) = A~x(t)
d
dt~x(t) = PDP−1~x(t)

P−1 d
dt~x(t) = DP−1~x(t)

d
dt

(
P−1~x

)
(t) = DP−1~x(t)

d
dt (~z)(t) = D~z(t)

Note that we use the fact that A is independent of the time t and that P−1 and d
dt (·) are linear functions on

~x(t) to conclude that,

P−1 d
dt
~x(t) =

d
dt

(
P−1~x

)
(t)

This transformation allows us to reach the following equation.

dz1

dt
(t) = λ1z1(t) and

dz2

dt
(t) = λ2z2(t)

Recall that λ1 and λ2 are the eigenvalues of A. We have reduced a second order equation into two smaller
first order equations that we know how to solve. The closed form values of the eigenvalues are,

λ1 =
1
2

(
−a1 −

√
a2

1 −4a0

)
and λ2 =

1
2

(
−a1 +

√
a2

1 −4a0

)

This tells us that,

z1(t) = c1eλ1t ,z2(t) = c2eλ2t (13)

After we solve of~z, we can get back~x be observing that,

~x = P~z

Side note. We observe a lot of shared structure between λ1 and λ2. Particularly, if a2
1 −4a0 < 0, we observe

that the eigenvalues are complex and are in fact conjugates of each other.

λ1 = λ2
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1.6 A shortcut to solving second order differential equations
As you can imagine, these steps can get tedious sometimes. We present to you a shortcut to solving such
equations that hinges on the fundamental theorem of differential equations to avoid using the matrices P and
P−1.

1. Cast a given differential equation into matrix form (11).

2. Find the eigenvalues of A. Let this be λ1 and λ2.

3. (a) If λ1 and λ2 are complex, they will be complex conjugates of each other. The solution will be,

x(t) = c1eσt cos(ωt)+ c2eσt sin(ωt)

where,
λ1 = σ + jω,λ2 = σ − jω

(b) If λ1 and λ2 are real and distinct, the solution will be,

x(t) = c1eλ1t + c2eλ2t

This is similar to (13)

4. Use the initial conditions to solve for c1 and c2.

You might be wondering what happens when λ = λ1 = λ2. The solution is of the form,

x(t) = c1eλ t + c2teλ t

The reason why is out of scope for this course as it requires the concept of Generalized Eigenvectors. You
can verify that the above is indeed a solution using the fundamental theorem of solutions to differential
equations.

1.7 Solving the second order circuit
Now that we have the theory, we can solve (8). We can recast this equation to,

d2VC2
dt2 +

C1 +C2 +C2
R2
R1

C1C2R2

 dVC2
dt +

VC2

C1C2R1R2
= 0 (14)

We get that,

a1 =

C1 +C2 +C2
R2
R1

C1C2R2

 and a0 =
1

C1C2R1R2

Let us simplify things and plug in values. Let C1 =C2 = 100µF,R1 = R2 = 1kΩ. Then,

a1 = 30,a0 = 100
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This tells us that,
λ1 ≈−26,λ2 ≈−4

We know that,
VC2(t) = c1eλ1t + c2eλ2t

and,
dVC2

dt
(t) = c1λ1eλ1t + c2λ2eλ2t

We can now use the initial conditions in (3) to solve for c1 and c2.
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