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Announcements

• Last time:

–  Bode plots

–  Resonance systes and Q

• HW 4 extended to Friday 

• No hw this week. 

–  Study for the midterm! 

–  Posted midterm practice 
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Today

• Start a new module: Control

 

• Describe dynamic systems as a state-space model 

–  Extremely powerful model

• Show some concrete examples of how to contruct state 
space models
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Brain Machine Interface

http://news.sky.com/story/woman-uses-her-mind-to-control-robotic-arm-10460512 
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Blood Oxigenation in the Brain

Q(t):  Total deoxyhemoglobin 

V(t):  Venous volume 

Fin(t):  Volume flow rate into tissue (ml/s) 

Fout(t):  Volume flow rate out of tissue (ml/s) 

Ca:  Arterial O2 concentration 

E:  Net extract of O2 from blood 
Buxton, Richard B., Eric C. Wong, and Lawrence R. Frank. "Dynamics of blood flow and oxygenation changes during brain activation: the balloon model." 

Magnetic resonance in medicine 39.6 (1998): 855-864. 
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Blood-Oxygen-Level-Dependent Signal

Diamagnetic Hb 

Paramagnetic Hbr 

Ogawa S. et al, 1992 

Oxyhemoglobin 

(diamagnetic) 

Deoxyhemoglobin 

(paramagnetic) 

Brain tissue 

(diamagnetic) 
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Brain Mapping with MRI
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Control Design Steps

1.   Describe physics with a differential or 
difference equations 

2.   Design control algorithms that manipulate 
these equations for desired behavior

⇒Continuous-time


⇒Discrete-time

Often where the “art” is
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State Space Models

n first order (but typically coupled) 
differential equations instead of a single nth order

control variable


“state vector”


“state variables”


State eqn:
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State Space Models

control variable


Free running


Controlled input


with disturbance 


disturbance 
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Reminder:

Today: write state model directly.

2nd order diff. eq.


example:

L

↓i 

current


C

+

-
v


Voltage


2 

- 
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Example 1: Pendulum

⇒acceleration


}
 ⇒tangent velocity


}


}
 }


(  ) 
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Example 1 Cont.

Two 1st order diff. Eq. instead of 1 2nd order 

f(~x(t))
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Example 2: RLC Circuits

From KVL:

R
 L
 C


u


2 
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Discrete Time Systems

In discrete-time systems, x(t) ,evolves according 
to a difference equation

→ 



EE16B M. Lustig,  EECS UC Berkeley

Example 3: Manufacturing

s(t): inventory at the start of day t

g(t): goods manufactured on day t (tomorrow inventory)

r(t): raw material available in the morning (becomes goods)

u(t): raw materials ordered today (arrives next AM)

w(t): amount sold

State
{

control
{


Disturbance
{
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Example 4: EECS Professors

p(t): EECS professors in year t

r(t): # of industry researchers

δ < 1 : fraction that leave the profession

u(t): average # of PhD/prof/year

Ɣ: fraction of new PhD that become professors

} without input will diminish to 0
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Example 4: EECS Professors

u(t): average # of PhD/prof/year

Ɣ: fraction of new PhD that become professors

# of new PhDs = p(t)u(t)
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Linear Systems

When the state equation is linear

n×n

n×1 for scalar u

n×m for m inputs
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Revisiting Examples

Q: Is example 1 linear?

Q: example 2 linear?

A: Linear


A: Non Linear
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Revisiting Example 2:

A
 B


Linear relationship: 

2 
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Revisiting Examples

Q: Is example 3 linear?

A: Linear


A
 Bu
 Wu
x(t)
→
x(t+1)
→
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Revisiting Examples

Q: Is example 4 linear?

A: non Linear
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State variables are not unique!

Let T be an invertible matrix:

Then,

Changing State Variable



EE16B M. Lustig,  EECS UC Berkeley

Changing State Variables

Can be written as, 

Define:

Similarly for continuous systems!

Next: We will see how a special choice of T will 
make it easy to analyze system properties like 
stability, and controllability
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Summary

• Learned to describe systems in a state-space model 

–  Extremely powerful model!!!

• State space model leads to coupled 

–  1st order (coupled) differential equations  (Cont. time)

–  1st order (coupled) difference  equations (Disc. time)

• Talked about linear systems

–  Described state evolution in matrix form

• Showed how to change state variables 

• Next: Linearization of non-linear systems


