EE16B Designing Information Devices and Systems II

Lecture 5A Control- state space representation

Announcements

- Last time:
 - Bode plots
 - Resonance systes and Q

- HW 4 extended to Friday
- No hw this week.
 - Study for the midterm!
 - Posted midterm practice

Today

Start a new module: Control

 Describe dynamic systems as a state-space model Extremely powerful model

 Show some concrete examples of how to contruct state space models

SELF-DRIVING CARS

EE16B M. Lustig,

Stanley: winner of the DARPA Grand Challenge

EE16B M. Lustig, EEC

Credit: Thrun, Journal of Field Robotics, 2006. DOI: 10.1002/rob.20147

EE16B M. Lustig, EE

TRAFFIC CONTROL

Goal: increase throughput, reduce travel time, vehicle miles traveled, emissions. Control mechanisms: signal timing at intersections and onramps, speed advisory, lane management, etc.

EE16B M. Lustig, EE

TCP and variants increase congestion, and decrease when there is congestion,

Brain Machine Interface

http://news.sky.com/story/woman-uses-her-mind-to-control-robotic-arm-10460512

EE16B M. Lustig, EE

Blood Oxigenation in the Brain

Endothellum No COXI → PGI2 EXT →

- Q(t): Total deoxyhemoglobin
- V(t): Venous volume
- $F_{in}(t)$: Volume flow rate into tissue (ml/s)
- $F_{out}(t)$: Volume flow rate out of tissue (ml/s)
- Ca: Arterial O2 concentration

Blood-Oxygen-Level-Dependent Signal

Brain tissue (diamagnetic)

Oxyhemoglobin (diamagnetic)

Deoxyhemoglobin (paramagnetic)

EE16B M. Lustig, EECS UC Berkeley

Ogawa S. et al, 1992

Brain Mapping with MRI

Control Design Steps

1. Describe physics with a differential or difference equations \Rightarrow Discrete-time

2. Design control algorithms that manipulate these equations for desired behavior

State Space Models

n first order (but typically coupled) differential equations instead of a single nth order

EE16B M. Lustig, EECS UC Berkeley

"state variables"

"state vector"

control variable $\frac{d}{dt}\vec{x}(t) = f\left(\vec{x}(t), \vec{u}(t)\right)$

State Space Models

Controlled input

with disturbance

EE16B M. Lustig, EECS UC Berkeley

$\frac{d}{dt}\vec{x}(t) = f\left(\vec{x}(t)\right)$

control variable $\frac{d}{dt}\vec{x}(t) = f\left(\vec{x}(t), \vec{u}(t)\right)$

disturbance $\frac{d}{dt}\vec{x}(t) = f\left(\vec{x}(t), \vec{u}(t), \vec{w}(t)\right)$

Reminder:

Today: write state model directly. example: current

Example 1: Pendulum

 $\begin{aligned} x_1(t) &= \theta(t) \\ x_2(t) &= \dot{\theta}(t) = \frac{d\theta(t)}{dt} \end{aligned}$ ma = F $\frac{dx_1(t)}{dt} = x_2(t)$ $dx_2(t)$ g . ($\rho(\eta)$) $\ddot{o}(a)$ sin(dt

EE16B M. Lustig, EECS UC Berkeley

$m\left(l\frac{d^2\theta}{dt^2}\right) = -mg\sin(\theta) - k(l\dot{\theta}(t))$ ⇒tangent velocity

 \Rightarrow acceleration

Example 1 Cont.

Two 1st order diff. Eq. instead of 1 2nd order $\frac{dx_1(t)}{dt} = x_2(t)$ $\frac{dx_2(t)}{dt} = -\frac{g}{l}\sin(x_1(t)) - \frac{k}{m}x_2(t)$ $\vec{x}(t) = \left| \begin{array}{c} x_1(t) \\ x_2(t) \end{array} \right|$

 $f(\vec{x}(t))$

 $\Rightarrow \frac{d\vec{x}(t)}{dt} = f(\vec{x}(t)) = \begin{bmatrix} x_2(t) \\ -\frac{g}{l}\sin(x_1(t)) - \frac{k}{m}x_2(t) \end{bmatrix}$

Example 2: RLC Circuits

From KVL: $V_R + V_L + V_C = u$ $L\frac{di(t)}{dt} = V_L = u - V_c - V_R = u - V_c - Ri$ $C\frac{dV_C(t)}{dt} = i$ $dx_2(t)$

Discrete Time Systems

In discrete-time systems, $\vec{x}(t)$, evolves according to a *difference* equation

$\vec{x}(t+1) = f(\vec{x}(t), \vec{u}(t), \vec{w}(t))$

EE16B M. Lustig, EECS UC Berkeley

 $t = 0, 1, 2, \cdots$

Example 3: Manufacturing

State State s(t): inventory at the start of day t g(t): goods manufactured on day t (tomorrow inventory) r(t): raw material available in the morning (becomes goods) control { u(t): raw materials ordered today (arrives next AM) Disturbance { w(t): amount sold

$$s(t+1) = r(t)$$
$$g(t+1) = r(t)$$
$$r(t+1) = u(t)$$

Example 3: Manufacturing

 State
 s(t): inventory at the start of day t

 g(t): goods manufactured on day t (tomorrow inventory)

 r(t): raw material available in the morning (becomes goods)

control { u(t): raw materials ordered today (arrives next AM) Disturbance { w(t): amount sold

$$s(t+1) = s(t)$$
$$g(t+1) = r(t)$$
$$r(t+1) = u(t)$$

EE16B M. Lustig, EECS UC Berkeley

(t) + g(t) - w(t)

Example 4: EECS Professors

- p(t): EECS professors in year t r(t): # of industry researchers $\delta < 1$: fraction that leave the profession
 - $p(t+1) = p(t) \delta p(t) \\ r(t+1) = r(t) \delta r(t)$ without input will diminish to 0
- u(t): average # of PhD/prof/year Y: fraction of new PhD that become professors

Example 4: EECS Professors

u(t): average # of PhD/prof/year Y: fraction of new PhD that become professors

of new PhDs = p(t)u(t)

 $p(t+1) = p(t) - \delta p(t) + \gamma p(t)u(t)$ $r(t+1) = r(t) - \delta r(t) + (1 - \gamma)p(t)u(t)$

Linear Systems

When the state equation is linear

$\vec{x}(t+1) = A\vec{x}(t) + B_u\vec{u}(t) + B_w\vec{w}(t)$

EE16B M. Lustig, EECS UC Berkeley

$\frac{d\vec{x}(t)}{dt} = f(\vec{x}(t), \vec{u}(t), \vec{w}(t)) = A\vec{x}(t) + B_u \vec{u}(t) + B_w \vec{w}(t)$ $\bigwedge_{n \times n} \bigwedge_{n \times n} \inf_{n \times m \text{ for scalar } u \text{ in } n \times m \text{ for m in puts}}$

Q: Is example 1 linear?

$$\frac{dx_1(t)}{dt} = \frac{1}{C}x$$
$$\frac{dx_2(t)}{dt} = \frac{1}{L}u(t)$$

A: Linear

m $\frac{d\vec{x}(t)}{dt} = f(\vec{x}(t)) = \begin{bmatrix} x_2(t) \\ -\frac{g}{l}\sin(x_1(t)) - \frac{k}{m}x_2(t) \end{bmatrix}$

Revisiting Example 2:

Linear relationship:

 $\frac{dx_1(t)}{dt} = \frac{1}{C} x_1(t)$ $\frac{dx_2(t)}{dt} = \frac{1}{L}u(t) - \frac{1}{L}x_1(t) - \frac{R}{L}x_2(t)$

Q: Is example 3 linear?

A: Linear

x(t+1)

Q: Is example 3 linear?

g(t+1) = r(t)r(t+1) = u(t)

A: Linear

EE16B M. Lustig, EECS UC Berkeley

 $\begin{bmatrix} s(t+1) \\ g(t+1) \\ r(t+1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} s(t) \\ g(t) \\ r(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t) + \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} w(t)$ Wu Bu

Q: Is example 4 linear?

A: non Linear

EE16B M. Lustig, EECS UC Berkeley

$p(t+1) = p(t) - \delta p(t) + \gamma p(t)u(t)$ $r(t+1) = r(t) - \delta r(t) + (1-\gamma)p(t)u(t)$

Changing State Variable

State variables are not unique! $\vec{x}(t+1) = A\vec{x}(t) + B\vec{u}(t)$

Let T be an invertible matrix:

Then,

 $\vec{z}(t+1) = T\vec{x}(t+1) = TA\vec{x}(t) + TB\vec{u}(t)$ $= TAT^{-1}\vec{z}(t) + TB\vec{u}(t)$

- $\vec{z} = T\vec{x}$

Changing State Variables

 $\vec{x}(t+1) = A\vec{x}(t) + B\vec{u}(t)$ Define: $\vec{z} = T\vec{x}$ $A_{new} = TAT^{-1}$ $B_{new} = TB$ Can be written as, $\vec{z}(t+1) = A_{\text{new}}\vec{z}(t) + B_{\text{new}}\vec{u}(t)$ Similarly for continuous systems!

Next: We will see how a special choice of T will make it easy to analyze system properties like stability, and controllability

Summary

- Learned to describe systems in a state-space model
 - Extremely powerful model!!!
- State space model leads to coupled - 1st order (coupled) differential equations (Cont. time) – 1st order (coupled) difference equations (Disc. time)
- Talked about linear systems Described state evolution in matrix form
- Showed how to change state variables
- Next: Linearization of non-linear systems