EE16B Designing Information Devices and Systems II Lecture 5B

Linearization Stability of linear state models

Announcements

- Midterm:
 - Monday 10/2 8-10pm
 - Pay attention to Piazza post on seating
- Review Session on Saturday 10am-12pm
- Midterm practice problems posted
- HW:
 - extended hw due Friday,
 - Self grading due Monday at noon

Intro

- Last time
 - Described systems with state-space model
 - Talked about linear systems
 - Change of variables

- Today
 - Linearization of non-linear systems
 - Begin Stability of linear state models
 - Scalar and discrete

EE16B M. Lustig, EECS UC Berkeley

https://www.youtube.com/watch?v=SPO9pVwoxVg

Linearization

Linearization

EE16B M. Lustig, EECS UC Berkeley

$\Rightarrow \begin{bmatrix} \frac{dx_1(t)}{dt} \\ \frac{dx_2(t)}{dt} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{l} & -\frac{k}{m} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$

How many state variables?

Taylor Approximation - scalar

 $f: \mathbb{R} \rightarrow$

$f(x) \approx f(x^*)$ $\Rightarrow \sin(x) \approx \sin(x)$ $|x^* = 0| \Rightarrow \sin(x) \approx \sin(0) + \cos(0)(x - 0)$ $\sin x \approx x$

$$+ f'(x^*)(x - x^*) x^*) + \cos(x^*)(x - x^*)$$

$$\mathbb{R} \xrightarrow{f(x^*)(x^*)} x^*$$

 $f: \mathbb{R}^N \to \mathbb{R}^N$

 $f(\vec{x}) \approx f(\vec{x}^*) + \nabla f(\vec{x}^*)(\vec{x} - \vec{x}^*)$ Nx1 Nx1 Nx1

Q: What are the dimensions of $\nabla f(\vec{x}^*)$? (Jacobian) A: NxN ?

 $\frac{d}{dt}\vec{x} = f(\vec{x})$

EE16B M. Lustig, EECS UC Berkeley

i,jth entry: $\frac{\partial f_i(x)}{\partial x_j}$

EE16B M. Lustig, EECS UC Berkeley

 $f_1(x_1,\cdots,x_N) \ f_2(x_1,\cdots,x_N)$ $f(\vec{x})$ $f_N(x_1,\cdots,x_N)$

 $rac{\partial f_1}{\partial x_N}$

 ∂x_N

i,jth entry: $\partial f_i(x)$

EE16B M. Lustig, EECS UC Berkeley

 $f_1(x_1,\cdots,x_N) \ f_2(x_1,\cdots,x_N)$ $f(\vec{x})$ $f_N(x_1,\cdots,x_N)$

 $rac{\partial f_1}{\partial x_N}$

 ∂x_N

i,jth entry: $\partial f_i(x)$

Linearization of State-Space

Linearize around an equilibrium, a point s.t.:

 $\frac{d}{dt}\vec{x} = f(\vec{x})$

Which of the variables is a function of t?

write a state model for deviation!

EE16B M. Lustig, EECS UC Berkeley

$f(\vec{x}^*) = 0$ Q: why? A: no change!

Linearization of State-Space

 $= f(\vec{x}(t)) \approx f(\vec{x}^*) + \nabla f(\vec{x}^*) \tilde{x}(t)$

Back to the Pendulum

Pendulum at Equilibrium

Discrete Time

EE16B M. Lustig, EECS UC Berkeley

(for cont. $f(\vec{x}^*) = 0$)

Stability of Linear State Models

Start with scalar system 1st order system:

- Given initial condition x(0):
 - x(1) = ax(0) + bu(0)x(2) = ax(1) + bu(1) $= a^{2}x(0) + abu(0) + bu(1)$ $x(3) = a^{3}x(0) + a^{2}bu(0) + abu(1) + bu(2)$

x(t+1) = ax(t) + bu(t)

$x(t) = a^{t}x(0) + a^{t-1}bu(0) + a^{t-2}bu(1) + \dots + a^{0}bu(t-1)$

Stability of Linear State Models

Start with scalar system: Given initial condition x(0): k = 0

Initial condition k = 0

EE16B M. Lustig, EECS UC Berkeley

x(t+1) = ax(t) + bu(t)

k = 0 $x(t) = a^{t}x(0) + a^{t-1}bu(0) + a^{t-2}bu(1) + \cdots + a^{0}bu(t-1)$ k = t - 1

Stability - Definition

- A system is stable if $\vec{x}(t)$ is bounded for any initial condition $\vec{x}(0)$ and any bounded input sequence $u(0), u(1), \cdots$
- A system is unstable if there is an $\vec{x}(0)$ or a bounded input sequence for which

 $|\vec{x}(t)| \to \infty$ as $t \to \infty$

Example

stable

Q) Is this system stable? $x(t) = a^{t}x(o) + \sum a^{t-k-1}bu(k)$ A) Depends on lal

EE16B M. Lustig, EECS UC Berkeley

unstable

Stability Proof

$$x(t) = a^{t}x(o) + \sum_{k=1}^{k} x_{k}(c) + \sum$$

- Claim 1: if |a| < 1 then the system is stable Proof: $a^t \rightarrow 0$ as $t \rightarrow \infty$ because |a| < 1 so, initial condition always bounded Sequence is bounded – there exists M s.t. $|u(t)| \leq M \forall t$

$$\left| \sum_{k=0}^{t-1} a^{t-k-1} bu(k) \right| \leq \sum_{k=0}^{t-1} |a^{t-k-1} bu(k)| = \sum_{k=0}^{t-1} |a|^{t-k-1} |b|| \underbrace{u(k)}_{\leq M}$$
$$|a_1| + |a_2| ? |a_1 + a_2|$$

t-1 $a^{t-k-1}bu(k)$ =0

Stability Proof Cont.

Define: s = t - k - 1

t-1 $\leq \sum |a^s| |b| M = |b|$ $\overline{s=0}$

$$|u^{-1}bu(k)| = \sum_{k=0}^{t-1} |a|^{t-k-1} |b|| |u(k)| \le M$$

$$b|M\sum_{s=0}^{t-1} |a|^{s} \le |b|M\frac{1}{1-|a|}$$

$$\sum_{s=0}^{\infty} |a|^s = \frac{1}{1-|a|} , \quad |a| < 1$$

Stability Proof Cont.

Claim 2: unstable when |a| > 1Proof: if $x(0) \neq 0$ (even $u(t)=0 \forall t$)

Q: What if |a| = 1, i.e., a=1 or a=-1A: Without input: $x(t) = a^t x(0)$ x(t) = x(0), or $x(t) = (-1)^t x(0)$ With input u(t)=M, a=1|t-1| $\sum a^{t-k-1}bu(k)$ $\overline{k=0}$

 $x(t) = a^t x(0) \to \infty$

$$= \left| \sum_{k=0}^{t-1} bM \right| \longrightarrow \infty \qquad \text{Not stable!}$$

Quiz

With input u(t)=M, a=-1

Q:what $|u(t)| \leq M$ will make it unstable?

Quiz

With input u(t)=M, a=-1

$$\left|\sum_{k=0}^{t-1} a^{t-k-1} bu(k)\right|$$

Q:what $|u(t)| \leq M$ will make it unstable? A: $u(t) = (-1)^t M$

$$\left|\sum_{k=0}^{t-1} a^{t-k-1} bu(k)\right| =$$

$$= \left| \sum_{k=0}^{t-1} (-1)^k bM \right| \le bM$$

$$\left|\sum_{k=0}^{t-1} (-1)^k b(-1)^k M\right| = \left|\sum_{k=0}^{t-1} bM\right| \to \infty$$

Stability Cont.

What if a is complex valued?

$|a| = \sqrt{\text{Re}(a)^2 + \text{Im}(a)^2}$

EE16B M. Lustig, EECS UC Berkeley

$|a| < 1 \Rightarrow stable$ $|a| \ge 1 \Rightarrow unstable$

Summary

- Described linearization about an equilibrium point
 - Continuous time
 - Discrete time
- Conditions for stability of a linear systems
 - Covered:
 - Discrete, First order and scalar
- Next time:
 - Vector case! (which leads to Eigen-value analysis)